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Chapter 1

Preliminaries

1.1 Statements, Variables and Vocabulary

Statements, Variables

• A statement in mathematics is a declarative sentence, for instance, “the sky is red”.

• A variable is a symbol that can represent different objects. For instance, n often
stands for an arbitrary integer. In the following, P will denote an arbitrary state-
ment. If the statement P depends on a variable n, we note P (n). Example: “n is
even”.

• once fully specified, a statement is either true or false.

Logical Operations

• If P is a statement, the negation of P is the assertion “P is false” (denoted as: ¬P ).

• If P and Q are two statements, the statement

– (P and Q) is the assertion “P is true and Q is true” (denoted as (P ∧Q)).

– (P or Q) is the assertion “at least one of P , Q is true” (denoted as (P ∨Q)).

Implications

• For two statements P , Q, we define the statement (P =⇒ Q) as meaning “if P is
true, then Q is true”. Q can be true even when P is not, but it can’t be false when
P holds.

• Example: It rains =⇒ There are clouds in the sky.

• Important: (P =⇒ Q) =⇒ (¬Q =⇒ ¬P ), and (¬Q =⇒ ¬P ) =⇒ (P =⇒ Q).

7



8 CHAPTER 1. PRELIMINARIES

Equivalencies

For two statements P and Q, we say that P and Q are equivalent, and note P ⇐⇒ Q
when P =⇒ Q and Q =⇒ P .

1.2 Set Theory Concepts

1.2.1 Sets

Set

• A set is a collection of objects. Examples: N: set of natural numbers. R: set of real
numbers. {1, 2, π}, the set of 2-d rotations, the empty set ∅.

• If E is a set and x is an object, the statement “x is an element of E” is written as
“x ∈ E”. The statement “x is not an element of E” is written as “x /∈ E”.

• Equality of two sets. Two sets A and B are equal when they have the same elements.

1.2.2 Inclusion, subsets

Subsets

Definition 1 (Inclusion between sets, subsets of a set). Let A and E be two sets. We
say that A is a subset of E, and note A ⊂ E, if all elements of A belong to E, e.g.
A ⊂ E : ∀x ∈ A, x ∈ E.

Cartesian Product of a Finite Family of Sets

Definition 2 (Cartesian Product of a Finite Family of Sets). Let A1, A2, . . . , An be n sets
for some n ∈ N. The Cartesian product A1 ×A2 × · · · ×An is defined as

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}.

if A1 = · · · = An = A, we denote it as An.

1.3 Universal and Existential Quantifiers

Quantifiers: ”for all” (∀) and ”there exists” (∃)

Suppose given a set X and, for every element x of X , an assertion P (x).

• The statement “ ∀ x ∈ X , P (x)” means: “for every x in X , P (x) holds.” Example:
∀n ∈ N, n ≥ 0.

• The statement “ ∃ x ∈ X : P (x)” means: “there exists (at least) one element x of
X such that P (x) holds.” Example: ∃n ∈ N, n ≤ 2. If that element is unique, we
write “ ∃! x ∈ X : P (x)”.
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• Such quantifiers can be assembled into more complex statements. Example a subset
A ⊂ N is bounded if ∃M ∈ N : ∀ ∈ A n ≤ M .

• Important exercise: define an unbounded (e.g. a set which is not bounded) set.

Method – Negation of a statement with nested quantifiers

To negate a statement containing multiple quantifiers,

• change all ∀ to ∃ and all ∃ to ∀, carefully maintaining the order,

• write the negation of the non-quantified part.

1.4 Reasoning: methods and examples

To prove statements of the type:

• “∀x ∈ E,P (x)”, start with an arbitrary element of E. When E is finite, one can
also check P (x) for every concrete value in X and show P (x).

• ∃x ∈ E : P (x), find a concrete example of such an element, when possible.

• A =⇒ B, one can either:

– Start by assuming A, and show B.

– Assume ¬B, and show ¬A.

• A ⇐⇒ B one often needs to show separately A =⇒ B and B =⇒ A.

• ∀n ∈ N, P (n), show separately

– assertion P (0) is true,

– [P (n) =⇒ P (n+ 1)].

1.5 Sums and Products

Sum & Product Notation

Given some elements a1, a2, . . . , an in R, we will note

• a1 + a2 + ...+ an as
n∑

i=1

ai

• a1 × a2 × ...× an as
n∏

i=1

ai
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Product and sums can be nested. Example:

n∑
i=1

i∑
j=1

aj = a1 + (a1 + a2) + (a1 + a2 + a3) + ...+ (a1 + a2 + ...+ an) .

n∑
i=1

i∑
j=1

aij = a11 + (a21 + a22) + (a31 + a32 + a33) + ...+ (an1 + an2 + ...+ ann) .
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1.6 Exercise Sheet 1: Preliminaries

Exercise: Necessary and Sufficient Conditions

Exercise 1. 1. Complete each statement in . . . with one of the symbols =⇒ , ⇐= ,
⇐⇒ :

(a) For n ∈ N, n is multiple of 2 . . . n is multiple of 4 or n is multiple of 6.

(b) For x ∈ R,
√
x2 + 4x+ 5 = 1 . . . x2 + 4x+ 5 = 1

(c) For x ∈ R,
√
x2 + 4x+ 5 = 0 . . . x2 + 4x+ 5 = 0

(d) For x ∈ R, x− 3 = x2 + 2x . . . ex−3 = ex
2+2x

2. Complete each statement with “necessary”, “sufficient”, or “necessary and suffi-
cient”. In all assertions, x and y are real numbers and n is a natural number.

(a) x > 2 is . . . for x2 > 4.

(b) x+ y = 5 is . . . to have x = 2 and y = 3.

(c) for n to be multiple of 4, it is . . . that n be the square of an even integer.

(d) for x+ y to be equal to 5 and xy to be equal to 6, it is . . . that x = 2 and y = 3.

Solution. 1. First exercise:

(a) ⇐= , since n is a multiple of 4 or and 6, and both 4 and 6 are multiples of 2, n
is a multiple of 2. The converse is not true, since 2 is not a multiple of 4 or 6.

(b) =⇒ , squaring
√
x2 + 4x+ 5 = 1 recovers x2 + 4x + 5 = 1, however the

converse is not true, since knowing only that x2 + 4x + 5 = 1, we see that√
x2 + 4x+ 5 = ±1.

(c) ⇐⇒ , This problem is the same as the above, except ±0 = 0, so the equivalence
goes both ways.

(d) ⇐⇒ , since the exponential is a 1-to-1 map (it is bijective, see later classes,
this question will be removed!), a = b is equivalent to ea = eb.

2. Second exercise:

(a) Sufficient. x > 2 implies, by squaring, that x2 > 4. However, if x < −2 it is
also true that x2 > 4, hence it is not necessary.

(b) Necessary. x + y = 5 has to be true for x = 2 and y = 3, but there are many
other choices of x and y such that x+ y = 5, hence it is not sufficient.

(c) Sufficient. If n is the square of an even number, n = (2p)2 = 4p for some integer
p, hence it is divisible by 4. However, there are n divisible by 4 such that it is
not the square of an even integer, e.g. 8 = (2

√
2)2.

(d) Sufficient. It is clear that if x = 2 and y = 3, x + y = 5 and xy = 6. However
an alternative is that x = 3 and y = 2, hence it is not necessary that x = 2 and
y = 3.

■
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Exercise: Reading Statements

Exercise 2. Consider the sets A = {1, 2, 3}, B = {1, 2, 3, 4, 5}, C = {2, 4}, and D = N.
Determine whether the following statements are true or false.

(a) ∀x ∈ A, x ∈ B

(b) ∃x ∈ B, x ∈ A

(c) ∃x ∈ A, x /∈ B

(d) ∃x ∈ B, x /∈ A

(e) ∀x ∈ C,∃y ∈ B, x ≤ y

(f) ∀x ∈ A,∃y ∈ B, x ≤ y

(g) ∃x ∈ C,∀y ∈ A, y ≤ x

(h) ∃x ∈ B, ∀y ∈ A,∀z ∈ C, y + z ≤ 2x

(i) ∃x ∈ B, ∀y ∈ B, x ≤ y.

(j) ∃x ∈ D,∀y ∈ D,x ≤ y.

(k) ∃x ∈ D,∀y ∈ D,x ≥ y.

(l) ∀x ∈ D,∃y ∈ A, x = y.

(m) ∃x ∈ D,∃y ∈ A, x = y.

(n) ∃x ∈ D,∀y ∈ A, x = y.

Solution. (a) True, by exhaustion.

(b) True, 2.

(c) False, all of A is in B.

(d) True, 4.

(e) True, 5 ∈ B is bigger than all elements of C.

(f) True, 5 ∈ B is bigger than all elements of A.

(g) False, 1 ∈ A is smaller than all elements of C, hence no y ∈ C is smaller than all
x ∈ A.

(h) True, 10 = 2 × 5, 5 ∈ B is greater than the sum of the greatest elements of A and
C:7, therefore it is greater than y + z∀y ∈ A, z ∈ C.

(i) True, 1 ∈ B is the minimal element of B, so 1 ≤ y∀y ∈ B.

(j) True, 0 is less than or equal to all nonnegative integers.

(k) False, for any specific x ∈ D we can find y ∈ D that is larger, e.g. x+ 1.

(l) False, take 4, that is in N but not A, so there is no x ∈ A such that x = 4.

(m) True, 1 is in both D and A.

(n) False, there is no one number such that 1,2 and 3 all equal that number.
■
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Nested Quantifiers and Negation

Exercise 3. 1. Write the negation of each of the following statements:

(a) ∃x ∈ R : ∀n ∈ N, x > 2n

(b) ∀n ∈ N : ∃x ∈ R, x > 2n

(c) For all real numbers x and y, if x ≥ y then x2 ≥ y2.

2. For each of the statements above, determine if it is true or false, and justify carefully.
You may use the following fact without justification: if x is a real number, then there
exists an integer n ∈ N such that n > x.

3. Consider the statement:

∃x ∈ R : ∀y ∈ R, x2 + 2xy = 1. (P )

(a) Write the negation of (P).

(b) Is statement (P) true?

4. Is the following statement true or false?

∀x ∈ N,∃y ∈ N : ∃z ∈ N : (x ≤ y and y = 2z)

Solution. 1. (a) ∀x ∈ R : ∃n ∈ N, x ≤ 2n

(b) ∃n ∈ N : ∀x ∈ R, x ≤ 2n

(c) ∃x, y ∈ R : x ≥ y and x2 < y2

2. (a) False. For any x ∈ R choose an n ∈ N : n > x. Clearly x < 2n.

(b) True. Given an n ∈ N, choose x = 2n+ 0.1. Clearly x > 2n.

(c) True. If x ≥ y we can square both sides and derive that x2 ≥ y2.

3. (a) ∀x ∈ R : ∃y ∈ R, x2 + 2xy ̸= 1

(b) True, solving the quadratic equaiton: x = −y ±
√
y2 + 1 satisifes the equality

and can be solved for all y ∈ R.

4. True, choose y = 2x, then x ≤ y and y = 2z for z ∈ N since z = x ∈ N
■

Exercise 4. Consider A = {n ∈ N | ∃k ∈ N : n = k(k + 1)} and let B be the set of even
integers. Show the inclusion A ⊂ B.

Solution. Begin with an element a ∈ A. Since it is an element of A, a = p(p + 1) for
some p ∈ N. Let’s consider two cases, where p is even or odd. If p is even then p = 2q
for some q ∈ N. Then a = 2q(2q + 1), q(2q + 1) is just some integer, hence a is 2 times
some integer, so is divisible by 2. Conversely, if p is odd, p = 2q+1 for some q ∈ N. Then
a = (2q+1)(2q+2) = 2(2q+1)(q+1), where (2q+1)(q+1) is some integer, so similarly,
a is divisible by 2. Finally, to show that A is a strict subset of B, we need an element of
B that is not in A. An example of this is 4. ■
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Exercise 5.

• What is
∏n

i=1 cai in terms of
∏n

i=1 ai?

• What is
∑m

i=1 ai −
∑n

i=1 ai for n < m?

• Write e
∑n

i=1 ai in terms of each term eai .

• What is
∑n

i=1 c?

• Sn =
∑n

i=1 a
i is the sum of a geometric progression. By examining an expression

for aSn − Sn show that Sn = a(an−1)
a−1 . If |a| < 1 what is the limit as n =⇒ ∞?

(you could also try and show this by induction)

Solution. 1. cn
∏n

i=1 ai

2.
∑m

i=n+1 ai

3.
∏n

i=1 e
ai

4. nc

5. aSn − Sn =
∑n+1

i=2 ai −
∑n

i=1 ai = an+1 − a = (a − 1)Sn, hence: Sn = a(an−1)
a−1 . If

|a| < 1 then an tends to zero, hence Sn tends to a
1−a .

■

Exercise 6.

1. Show (by induction, although other proofs exist) that
n∑

i=1

i = n(n+1)
2 for all n ∈ N⋆.

2. Show that
n∑

i=1

i+ c = n(n+1)
2 + cn, for all c ∈ R, n ∈ N⋆.

3. (Nested Sums) Provide expressions for

•
n∑

i=1

n∑
k=i

c, for all c ∈ R, n ∈ N⋆.

•
n∑

i=1

n∑
j=1

ij (hint: develop (
n∑

i=1

ai)× (
n∑

j=1

bi), where for a1, . . . , an, b1, . . . , bn ∈ R.

4. (Reversing orders of summation in nested sums) Let (ai,j)1≤i,j≤n ∈ Rn2

. Complete
the bullets

n∑
i=1

n∑
j=1

ai,j =

•∑
j=•

•∑
i=•

ai,j

n−1∑
i=1

n∑
j=i+1

ai,j =

•∑
j=•

•∑
i=•

ai,j

n−1∑
i=1

i∑
j=1

ai,j =

•∑
j=•

•∑
i=•

ai,j
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5. (Harder) Show by induction that (a + b)n ≤ 2n−1 (an + bn) for all a, b ∈ R and
n ∈ N⋆ for a, b ≥ 0.

Solution. 1. First, for n = 1 we see that both sides equal 1. Then let’s assume the

induction hypothesis, that
∑n

i=1 = n(n+1)
2 for some n, and show that implies the

same hypothesis holds for n+ 1. We can see this as follows:

n+1∑
i=1

i =

n∑
i=1

i+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

(n+ 1)(n+ 2)

2

where the second equality used the induction hypothesis. We’re done.

2.
∑n

i=1(i+ c) =
∑n

i=1 i+
∑n

i=1 c which by previous questions is n(n+1)
2 + nc.

3. (a)
∑n

i=1

∑n
k=i c = c

∑n
i=1(n− i) = c(n2 − n(n+1)

2 ) = cn(n−1)
2

(b) We can follow the hint and find that (
∑n

i=1 ai)(
∑n

j=1 bi) =
∑n

i=1

∑n
j=1 aibi.

Then
∑n

i=1

∑n
j=1 ij = (

∑n
i=1 i)(

∑n
j=1 j) =

n2(n−1)2

4 .

Alternatively:
∑n

i=1

∑n
j=1 ij =

∑n
i=1 i

∑n
j=1 j =

∑n
i=1 i

n(n−1)
2 =

n(n−1)
2

∑n
i=1 i =

n2(n−1)2

4

4. (a)
∑n

i=1

∑n
j=1 aij =

∑n
j=1

∑n
i=1 aij . These are just two ways of saying sum up all

the elements of aij .

(b)
∑n−1

i=1

∑n
j=i+1 aij =

∑n
j=2

∑j−1
i=1 aij , by the drawing the square method.

(c)
∑n−1

i=1

∑i
j=1 aij =

∑n−1
j=1

∑n−1
i=j aij

5. To show by induction we first show that the statement holds for n = 1. This is clear,
since a + b ≤ a + b. Now we assume the statement holds for n ∈ N∗, the induction
hypothesis, and try to prove it for n + 1. To do this let’s examine the right hand
side - 2n(an+1 + bn+1). Let’s assume that a > b for now, then:

2n(an+1 + bn+1) = 2na(an + bn
b

a
) ≥ 2na(an + bn) = 2a(2n−1(an + bn))
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We can see the RHS (right hand side) of the induction hypothesis coming out, so we
can use that to say:

2a(2n−1(an + bn)) ≥ 2a(a+ b)n

Now we can make our final link. Since a > b, 2a > (a+ b), therefore:

2a(a+ b)n ≥ (a+ b)(a+ b)n = (a+ b)n+1

So we have show that, only assuming the statement holds for a given n, it also holds
for n+ 1, hence, the statement is true.

■



Chapter 2

Vector and Matrices, basic
operations and arithmetics

2.1 The Vector Space Rn

Informal Motivation

A lot (most?) of science (and maths) is about decomposing things into their parts, then
reasoning about the parts and their interactions. A lot of objects can be described by a
set of numbers (position in 3D space, position in abstract space, vector of neural firing
rates, weight vector connecting to one neuron, vector of fMRI voxel responses, etc.). This
chapter is about decomposing and working with these objects.
We will begin by defining the objects, and how to combine them. Then we will discuss
‘good’ sets of atomic parts that we can use to decompose the whole space.

For n ≥ 1, the space Rn is defined as the Cartesian product of R with itself n-times (recall
Definition 2).

The n-dimensional real space Rn

Definition 3 (n-dimensional real space). Let n ∈ N⋆ . For some elements x, y ∈ Rn, and
λ ∈ R, we define the following two operations:

• vector addition: x+ y := (x1 + y1, . . . , xn + yn)

• scalar multiplication: λ× x := (λx1, . . . , λxn)

From now on, we call elements of Rn vectors.

Properties of the Internal and External Binary Operations

Proposition 1. The following properties hold:

1. ∀λ, µ ∈ R,∀x ∈ Rn, (λ+ µ)× x = λ× x+ µ× x (distributivity of + w.r.t ×)

17
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2. ∀λ, µ ∈ R,∀x ∈ Rn, λ× (x+ y) = λ× x+ λ× y (distributivity of × w.r.t +)

2.2 Matrices

Definition 4 (Matrices). A real matrix A with n rows and p columns is the indexed set
(Aij)i=1,...,n,j=1,...,p, where Aij ∈ R. A will also be denoted by:

A :=


A11 . . . A1n

A21 . . . A2n

...
. . .

...
An1 . . . Anp


Aij is the element “in i-th row and the j-the column”. The set of all real-valued matrices
with n rows and p columns is denoted by Mn,p(R). If n = p, A is called a square matrix,
and we denote the set of all square matrices of size n by Mn(R).

An important special case is the identity matrix, denoted In ∈ Mn,n(R), which is defined
as:

In =


1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 0 . . . 1



Definition 5 (Matrix Addition and Scalar Multiplication). For A,B be two matrices in
Mn,p(R), and λ ∈ R, we define the following two operations:

• (Addition) A+B ∈ Mn,p(R), defined as:

(A+B)ij = Aij +Bij

• (Scalar Multiplication) λA ∈ Mn,p(R), defined as:

(λA)ij = λAij

Definition 6 (Matrix-Matrix Multiplication). Let A ∈ Mn,p(R), and B ∈ Mp,q(R).
Then the product AB ∈ Am,p(R) is defined as:

(AB)ij =

n∑
k=1

AikBkj

Definition 7 (Matrix-Vector Multiplication). Let M ∈ Mm,n(R), and x ∈ Rn. Then the
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product Mx ∈ Rm is defined as:

(Mx)i =

n∑
k=1

Mikxk

Note that this recovers the matrix-matrix multiplication of M by x when viewing x as a
(n× 1) matrix (by identifying vectors in Rn with Mn,1(R)).

Note that Inx = x (show that yourself).

Definition 8 (Matrix and Vector Transpose). Let M ∈ Mm,n(R). The transpose of M ,
denoted M⊤ ∈ Mn,m(R), is defined as:

(M⊤)ij = Mji

If x is a vector in Rn, the transpose of x, denoted x⊤ ∈ M1,n(R), is defined as the
matrix-transpose of x when viewed as a (n× 1) matrix.

Matrix Inverse

Definition 9 (Inverse of a Matrix). Let M ∈ Rn×n (the number of columns and rows are
equal!). Then M is said to be invertible if there exists a matrix M−1 ∈ Rn×n such that:

MM−1 = M−1M = I

Inverse of product (Important!)

Proposition 2. Let A, B ∈ Rn×n be two invertible matrices. Then AB is invertible, and

(AB)−1 = B−1A−1

Exercise

Proof. Exercise.

Inverse of Matrix transpose

Proposition 3 (Inverse of Matrix Transpose). Let M ∈ Rn×n. Then if M⊤ is invertible:

(M⊤)−1 = (M−1)⊤

Exercise

Proof. Exercise.
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2.3 Exercise Sheet 2: Vectors and Matrices

Some Concrete Examples

Exercise 7. Let x = (1, 2), y = (−1, 3), A =

(
1 1
1 0

)
, B =

(
1 0
0 0

)
. Write out:

1. 2x

2. 3y

3. x+ y

4. −2A

5. Ax

6. A(x+ y)

Show that A is invertible and compute its inverse. Show that B is not invertible.

Solution. 1. (2, 4)

2. (−3, 9)

3. (0, 5)

4.

(
−2 −2
−2 0

)
5. (3, 1)

6. (5, 0)
To show A is invertible let’s show we can find a matrix C such that AC = I, CA = I. If
C satisfies this it must be the inverse of A. Let’s set this up:(

1 1
1 0

)(
a b
c d

)
=

(
1 0
0 1

)
From this we can solve the equations and find a = 0, b = 1, c = 1, d = −1. Now we have
a candidate, let’s check that CA = I. Indeed we can verify this:(

0 1
1 −1

)(
1 1
1 0

)
=

(
1 0
0 1

)
But be careful! Not all C such that CA = I satisfy AC = I. Think about the case where
A and C are rectangular, AC and CA are not both defined! This leads to the concept
of a right inverse and a left inverse, the right inverse of A is the matrix that when you
multiply on the right produces identity AC = I, without guaranteeing that CA = I. If a
matrix is both the left and right inverse of A, it is the inverse of A.
Since we have found the inverse of A, it is invertible.
Doing this for B: (

1 0
0 0

)(
a b
c d

)
=

(
1 0
0 1

)
we find the condition 0 = 1 for the bottom right element, which cannot be satisfied. Hence
there is no inverse of B, it is not invertible. ■
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Associativity of Matrix-Matrix Product

Exercise 8. Let A ∈ Mn,p(R), B ∈ Mp,q(R), and C ∈ Mq,r(R). Show that (AB)C =
A(BC). (Hint: To do so, you must show that ((AB)C)i,j = (A(BC))ij, for all i ∈
{1, . . . , n} and j ∈ {1, . . . , r}.)

Solution. ((AB)C)ij =
∑p

k=1(AB)ikCkj =
∑q

k=1(
∑p

l=1 AilBlk)Ckj =∑q
k=1

∑p
l=1 AilBlkCkj =

∑p
l=1 Ail(

∑q
k=1 BlkCkj) =

∑p
l=1 Ail(BC)lj = (A(BC))ij ■

Distributivity of Matrix and Vector Multiplications

Exercise 9. • A ∈ Mn,p(R),

• B1, . . . , Br ∈ Mp,q(R),

• x1, . . . , xr ∈ Rp

• λ1, . . . , λr ∈ R.
Show that:

1. A (
∑r

i=1 λiBi) =
∑r

i=1 λiABi.

2. A

(
r∑

i=1

λixi

)
=

r∑
i=1

λiAxi.

Solution. 1. (A (
∑r

i=1 λiBi))jk =
∑p

l=1 Ajl

∑r
i=1 λiBlk =

∑r
i=1 λi

∑p
l=1 AjlBlk =∑r

i=1 λi(AjlBlk)jk =
∑r

i=1 λi(AB)jk

2. (A(
∑r

i=1 λixi))j =
∑p

l=1

∑r
i=1 Ajlλi(xi)l =

∑r
i=1 λi(

∑p
l=1 Ajl(xi)l) =∑r

i=1 λi(Axi)j = (
∑r

i−1 λiAxi)j
■

Bilinear forms

Exercise 10. Let A ∈ Mn(R) be a square matrix. Let us denote BA : Rn × Rn → R the
function defined by

BA(x, y) = xTAy,

Show that:

1. BA(x, y + z) = BA(x, y) +BA(x, z) for all x, y, z ∈ Rn.

2. BA(x, λy) = λBA(x, y) for all x, y ∈ Rn and λ ∈ R.

With that in mind provide an expression for BA(x+ λy, z+ µt), for all x, y, z, t ∈ Rn and
λ, µ ∈ R.

Solution. 1. Linearity in the second argument

• For all x, y, z ∈ Rn,

BA(x, y + z) = xTA(y + z)

= xTAy + xTAz

= BA(x, y) +BA(x, z).
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• For all x, y ∈ Rn, λ ∈ R,
BA(x, λy) = xTA(λy)

= λxTAy

= λBA(x, y).

Hence, BA(x, ·) is linear in the second argument. Similarly we can show that BA(·, y) is
linear in the first argument.

2. Expression for BA(x+ λy, z + µt)

BA(x+ λy, z + µt) = BA(x, z + µt) + λBA(y, z + µt)

= BA(x, z) + µBA(x, t) + λ (BA(y, z) + µBA(y, t))

= BA(x, z) + µBA(x, t) + λBA(y, z) + λµBA(y, t).

BA(x+ λy, z + µt) = BA(x, z) + µBA(x, t) + λBA(y, z) + λµBA(y, t)

■

Triangular Matrices

Exercise 11. Let A ∈ Mn(R) be a square matrix. We say that A is an upper triangular
matrix if Aij = 0 for all i > j, and a lower triangular matrix if Aij = 0 for all i < j.
Show that, if A,B are upper triangular matrices, and λ ∈ R

1. A+B is an upper triangular matrix, and λA.

2. AB is an upper triangular matrix.

Solution. 1. The sum A+B and the scalar multiple λA are upper triangular.

• For the sum C = A+B, we compute each entry:

Cij = Aij +Bij .

If i > j, then Aij = 0 and Bij = 0, so Cij = 0. Hence, C is upper triangular.

• For the scalar multiple D = λA, each entry is:

Dij = λAij .

If i > j, then Aij = 0, so Dij = λ · 0 = 0. Hence, D is upper triangular.

2. The product AB is upper triangular.
Let C = AB. We compute each entry:

Cij =

n∑
k=1

AikBkj .

Suppose i > j. To show that Cij = 0, observe the following:

• Since A is upper triangular, Aik = 0 whenever i > k.
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• Since B is upper triangular, Bkj = 0 whenever k > j.

So, for each k, either Aik = 0 (if i > k) or Bkj = 0 (if k > j). But since i > j, there is no
k for which both Aik ̸= 0 and Bkj ̸= 0. Thus, every term in the sum is zero, and so:

Cij =

n∑
k=1

AikBkj = 0.

Hence, AB is upper triangular.
■

Nilpotent Matrix

Exercise 12. Let A ∈ Mn(R) be a square matrix. We say that A is a nilpotent matrix if
there exists an integer n0 ∈ N such that An0 := A · · ·A︸ ︷︷ ︸

n0 times

= 0. Show that if A is nilpotent,

• Ak = 0 for all k ≥ n0.

• (I −A) is invertible with inverse
∑n0−1

k=0 Ak.

Solution. 1. Ak = 0 for all k ≥ n0

We proceed by induction on k ≥ n0.

• Base case: An0 = 0 by definition of nilpotency.

• Inductive step: Suppose Ak = 0 for some k ≥ n0. Then

Ak+1 = A ·Ak = A · 0 = 0.

By induction, Ak = 0 for all k ≥ n0.

2. I −A is invertible
We claim that

(I −A)−1 =

n0−1∑
k=0

Ak.

To verify this, we compute:

(I −A)

(
n0−1∑
k=0

Ak

)
=

n0−1∑
k=0

Ak −
n0−1∑
k=0

Ak+1.

Note that:
n0−1∑
k=0

Ak+1 =

n0∑
k=1

Ak.

Therefore:
n0−1∑
k=0

Ak −
n0∑
k=1

Ak = A0 −An0 = I − 0 = I.
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Thus, (I −A)
(∑n0−1

k=0 Ak
)
= I, and similarly one can show(

n0−1∑
k=0

Ak

)
(I −A) = I.

Hence, I −A is invertible with inverse
∑n0−1

k=0 Ak.
■

Trace of a Square Matrix

Exercise 13. Let A ∈ Mn(R) be a square matrix. We define the trace of A, denoted by
tr(A), as the sum of the diagonal entries of A, i.e.,

tr(A) =

n∑
i=1

Aii.

Show that:

1. Tr(A+B) = Tr(A) + Tr(B) for all A,B ∈ Mn(R).

2. Tr(λA) = λTr(A) for all A ∈ Mn(R) and λ ∈ R.

3. For A ∈ Mn,p(R) and B ∈ Mp,n(R), show that Tr(AB) = Tr(BA). More generally,
for A1, . . . As, s matrices such that the number of columns of Ai equals the number

of rows of Ai+1, show that Tr

(
s∏

i=1

Ai

)
= Tr

(
s∏

i=k

Ai

k∏
i=1

Ai

)
. We say that the trace

is cyclic.

Solution. 1. Linearity of the trace:

• We compute:

Tr(A+B) =

n∑
i=1

(A+B)ii =

n∑
i=1

(Aii +Bii) =

n∑
i=1

Aii +

n∑
i=1

Bii = Tr(A) + Tr(B).

• Similarly,

Tr(λA) =

n∑
i=1

(λA)ii =

n∑
i=1

λAii = λ

n∑
i=1

Aii = λTr(A).

2. Cyclic property of the trace:
Let A ∈ Mn,p(R) and B ∈ Mp,n(R). Then:

Tr(AB) =

n∑
i=1

(AB)ii =

n∑
i=1

p∑
k=1

AikBki,

Tr(BA) =

p∑
k=1

(BA)kk =

p∑
k=1

n∑
i=1

BkiAik.
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Since both expressions are equal (sum over same terms, just reordered), we conclude:

Tr(AB) = Tr(BA).

3. General cyclicity:
Let A1, A2, . . . , As be matrices such that the product A1A2 · · ·As is well-defined and
square. Let 1 ≤ k ≤ s.
We define:

A := AkAk+1 · · ·As, B := A1A2 · · ·Ak−1.

Then,
Tr(A1A2 · · ·As) = Tr(AB).

Since AB and BA are both square matrices and the product is defined, we can apply the
cyclic property of the trace:

Tr(AB) = Tr(BA).

Thus,
Tr(A1A2 · · ·As) = Tr(AkAk+1 · · ·AsA1A2 · · ·Ak−1).

This shows that the trace is invariant under cyclic permutations — i.e., the trace is cyclic.
■
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2.4 Neuro Q1: Ant Phasors

Some insects, like many other animals, are capable of dead-reckoning: they walk on a convoluted
path away from their nest in search of food, then to return home they take the direct route.
They do this by keeping track of a homing vector, i.e. the direction and displacement of the nest
from their position. We know they are not using a more complicated ‘cognitive map’ strategy
because if you pick them up and move them some vector away, they will return to a point that
is displaced from the nest by that same vector!1 How might this be neurally implemented?

Figure 2.1: Left: Ants can take convoluted routes while foraging, but they return on the shortest
path. Rigth: We known they are using vector navigation, or dead reckoning, because when
shifted by a vector during their exploration they will home back to the nest, plus that vector!

One way to understand the circuitry is via phasors. Phasors are a way of representing sinusoids
with a given frequency ω as points in 2D space: f(t) = A sin(ωt+ ϕ) is assigned the point in 2D
space with co-ordinantes (A cos(ϕ), A sin(ϕ)). Phasors are convenient because they make adding
sinusoids easy.

1. To see how phasors make life easy, let’s first see how it is hard.

(a) First, use the double angle formula (sin(x+y) = sin(x) cos(y)+cos(x) sin(y)) to show
that any sum of a sine and cosine can be rewritten using just one sine: a sin(t) +
b cos(t) = A sin(t+ϕ), and find expressions relating each of A and ϕ to a and b. Hint:
try to find expressions for A2 and tan(ϕ) in terms of a and b.

(b) Now consider two sinusoids: f1(t) = A1 sin(ωt + ϕ1) and f2(t) = A2 sin(ωt + ϕ2).
By using the double angle formula and the result above, or otherwise, show that
f(t) = f1(t) + f2(t) = A sin(ωt + ϕ) for some (A, ϕ) and find similar expressions
relating A and ϕ to A1, A2, ϕ1, and ϕ2.

2. So we painfully added the sinusoids. Now let’s see how much easier life is in phasor land.

Show that adding together the phasor representations of f1(t) and f2(t) using vector addi-
tion produces the phasor associated with f1(t) + f2(t). Wasn’t that simpler?

We turned adding sinusoids into adding 2D vectors, because we find adding 2D vectors easier.
This is how phasors get used in physics and electrical engineering. Neural circuits, however, find
adding sinusoids easier than adding 2D vectors, so they use the link in the other direction!!

1Similar, beautiful, work has shown they keep track of distance by integrating their steps: if you put an ant on
stilts it will overshoot the nest, while if you, less whimsically, cut their legs to shorten them they will undershoot.
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The ant has to keep track of its homing vector to the nest. Denote the current vector to nest
as u = (ux, uy) = (A1 cos(ϕ1), A1 sin(ϕ1)), which the ant is storing somewhere internally. Then
the ant takes a step v = (vx, vy) = (A2 cos(ϕ2), A2 sin(ϕ2)), and it needs to update its internal
encoding to u+ v. It can instead do this by adding sinusoids in one of two ways. Meditate and
justify to yourself that both work:

• Many brain areas oscillate at some frequency. If you had one neuron that oscillated with
phase and amplitude corresponding to f1, another to f2, and summed them this would
perform vector arithmetic.

• Rather than distributing the sinusoid across time, you can distribute it across neurons!
Create a neural population, g, h ∈ Rn where n is the number of neurons, with firing rates:

Homing Encoding gi(t) = A1(t) sin(ωi+ ϕ1(t)) (2.1)

Heading Direction hi(t) = A2(t) sin(ωi+ ϕ2(t)) (2.2)

Then you can recurrently connect the populations so that they add the sinusoids!

gi(t+ 1) = gi(t) + hi(t) (2.3)

Now onto some more biological topics, consider the second way of implementing the computation:

3. This is not the most biological system, for one, real neurons only have positive firing rates
but the neurons above are negative. Propose a new representation and corresponding
algorithm (Eq. (2.1) and Eq. (2.3)) that avoids this problem.

4. Neurons also have a maximum firing rate. The combination of these two mean we are
bounded from both ends. How does that restrict the computational power of the system?

5. We’re bumping into the constraints of a limited range of firing. In some sense our counting
system suffers from a similar problem. We want to express all the numbers between 1
and 1000 (or a million, or a billion, ...), but we don’t want to use 1000 different symbols.
Instead we use the same 10 symbols (0-9) in conjunction to code for many more numbers.
Based on this motivation can you propose a way to use multiple copies of a homing tracking
system to keep track of a larger range of homing vectors? How would you perform this
computation and does it strike you as very biological?

6. Grid cells represent an alternative circuitry for encoding and tracking 2D vectors. Rather
than encoding the amplitude in firing rate amplitude, and the phase in which neuron is
most active, grid cells simply store the ux = A1 cos(ϕ) and uy = A2 sin(ϕ) components of
the vector in the same way.

Let’s say we had two grid cells, defined as:

gs(u) = sin(ωxux + ωyuy)

gc(u) = cos(ωxux + ωyuy)

Now we need to wire up a circuit that implements tracking of the homing vector, like Eq. (2.3).
Show that updating the activity using the following matrix that depends on v in the fol-
lowing way accurately integrates (use the following identities sin(A+B) = sin(A) cos(B)+
cos(A) sin(B), cos(A+B) = cos(A) cos(B)− sin(A) sin(B):

W (v) =

[
cos(ωxvx + ωyvy) − sin(ωxvx + ωyvy)
sin(ωxvx + ωyvy) cos(ωxvx + ωyvy)

]
W (v)

[
gs(u)
gc(u)

]
=

[
gs(u+ v)
gc(u+ v)

]
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(Matrices of this type,

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, are called rotation matrices, for obvious reasons)

Explain how this avoids the unbounded firing rate problem, and how the system could use
different grid cells to code for loads of positions using a small number of neurons.

This is also unbiological, because now W (v) are effectively synaptic weights and we’re
asking them to be modulated by v: how do you change a synapse on the basis of an input?
But it turns out there are good workarounds.

Solution. 1. (a) Let’s use the suggested double angle formula:

A sin(t+ϕ) = A(sin(t) cos(ϕ) + cos(t) sin(ϕ)) = A cos(ϕ) sin(t) +A sin(ϕ) cos(t)

Hence a = A cos(ϕ) and b = A sin(ϕ). Squaring and adding these two, and
using the fact that cos2(ϕ) + sin2(ϕ) = 1, we get:

a2 + b2 = A2(cos2(ϕ) + sin2(ϕ)) = A2, A2 = a2 + b2

By dividing a and b we find that:

tan(ϕ) =
a

b

Actually solving for A and ϕ is a bit annoying. There’s an annoying subtlety
here relating when A is positive vs. negative. This problem is solved by the
atan2 function that you can look up, first implemented in fortran, such that:
A =

√
a2 + b2 and ϕ = atan2(b, a). We don’t need this for the question, but it

is useful if you ever want to convert from polar to cartesian coordinates.

(b) Now using double angle formula twice:

f1(t) + f2(t) = A1 cos(ϕ1) sin(ωt) +A1 sin(ϕ1) cos(ωt)

+A2 cos(ϕ2) sin(ωt) +A2 sin(ϕ2) cos(ωt)

=

(
A1 cos(ϕ1) +A2 cos(ϕ2)

)
sin(ωt)

+

(
A1 sin(ϕ1) +A2 sin(ϕ2)

)
cos(ωt)

Hence:

A2 = (A1 cos(ϕ1) +A2 cos(ϕ2))
2 + (A1 sin(ϕ1) +A2 sin(ϕ2))

2 (2.4)

While:

tan(ϕ) =
A1 cos(ϕ1) +A2 cos(ϕ2)

A1 sin(ϕ1) +A2 sin(ϕ2)
(2.5)

2. A phasor representation of a wave is a point (x, y) such that the amplitude of the
wave is its length A2 = x2+y2, while its phase is the angle to the x axis tan(ϕ) = y

a .

Representing each wave as a phasor we have the two points (A1 cos(ϕ1), A1 sin(ϕ1))
and (A2 cos(ϕ2), A2 sin(ϕ2)). Adding these is very simple:

(A1 cos(ϕ1) +A2 cos(ϕ2), A1 sin(ϕ1) +A2 sin(ϕ2))
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And we can see that, our two rules match our results from the previous question.
If we square and add the two elements using our rule to get the amplitude of the
wave we do indeed find Eq. (2.4), while if we divide them we do indeed get tan of
the phase as in Eq. (2.5).

3. You could add a constant offset to make things positive for some range of amplitude
values:

gi(t) = A1(t) sin(ωi+ ϕ1(t)) + bg bg > 0

hi(t) = A2(t) sin(ωi+ ϕ2(t)) + bh bh > 0

Then if we choose our update equation such that:

gi(t+ 1) = gi(t) + hi(t)− bh

We’re good, everything is self-consistent.

Having found this expression, how should bh be related to the max running speed
per discrete time interval?

4. Because there is a limited firing range, this coding scheme can only encode a limited
range of amplitudes. If the amplitude goes too high the firing rates will max out and
your encoding will break. Similarly, since sin(x) ∈ [−1, 1], we’re also constrained
from below by our nonnegativity constraint. If we don’t shift the firing rates up by
bg enough then there will be a limit from below on the amplitude. The best choice
for maximal range will be for bg to be in the middle of the range of values. Then the
range of firing rates is twice the maximal amplitude encodable using this scheme.

5. The question is trying to get you to say that you could have many circuits. Once the
circuit reaches it’s maximum amplitude you could treat it just like when a number
is 9 and goes one bigger and is set to 0 again. Set that amplitude to 0, and set
another neighbouring set of neurons to 1. Even for one-dimensional numbers this is
a bit unbiological because we need a mechanism in neural circuitry to carry the 1
over to the next population when one reaches the maximum, and similarly when the
units column goes below 0 amplitude it needs to reset to 9 and decrement the tens
column. I can’t think of good neural circuitry to do this, but it might exist.

To do the two dimensions of the vector you could use two such one-dimensional
schemes, but in keeping with the question you might want your two dimensions to
be polar coordinates: the angle and length of the vector. That means that you
need some quite subtle update mechanisms. For example, when the most detailed
encoding reaches its max value you need to set it to 0, and shift the next level up
by the right amount. There will be plausible neural circuitry to do this, but it will
be complex...

6. We can simply check that the operation works as advertised. Let’s denote θv =
ωxvx + ωyvy and θu = ωxux + ωyuy: [

cos(θv) − sin(θv)
sin(θv) cos(θv)

] [
sin(θu)
cos(θu)

]
=

[
cos(θv) sin(θu)− sin(θv) cos(θu)
sin(θv) sin(θu) + cos(θv) sin(θu)

]
=

[
sin(θu + θv)
cos(θu + θv)

]
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This avoids the problem, because if we just add a constant this firing pattern will say
between a fixed range for ever! At the moment many places are encoded identically,
move by one lattice lengthscale and you get the same code. If we had loads of these
‘grid modules’ oscillating at different frequencies we could code for a much larger
range of points.

■



Chapter 3

Vector Subspaces, Bases,
Coordinates

3.1 Subspaces in Rn

3.1.1 Definition and Basic Examples

We began with Rn. Now we describe the objects which are the ‘meaningful subparts’ of
Rn, in the sense that, given our rules of combining vectors, if we begin in this subpart
we’ll never get out!

Definition 10 (Subspace). Let n ∈ N∗. A subset F ⊆ Rn such that F ̸= ∅ is said to be a
subspace of Rn if it is stable under the internal and external binary operations of Rn, i.e.

• ∀x, y ∈ F , x+ y ∈ F ;

• ∀x ∈ F and λ ∈ R, λ× x ∈ F .

Proposition 4. F is a subspace of Rn if and only if ∀x, y ∈ F and λ ∈ R, λ×x+ y ∈ F .

Proof. Let us assume that ∀x, y ∈ F and λ ∈ R, λ×x+y ∈ F . Then, on one hand, taking
λ = 1, we obtain that ∀x, y ∈ F , x+ y ∈ F . On the other hand, taking y = 0, we obtain
that ∀x ∈ F and λ ∈ R, λ× x ∈ F .
Let us now assume that

i) ∀x, y ∈ F , x+ y ∈ F ;

ii) ∀x ∈ F and λ ∈ R, λ× x ∈ F .

Take x ∈ F and λ ∈ R, by ii), z = λ× x ∈ F . Take y ∈ F , since z ∈ F , by i), z + y ∈ F .
But since z = λ× x, we conclude that ∀x, y ∈ F and λ ∈ R, λ× x+ y ∈ F .

31
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Visualising Subspace

In 3D a subspace might be a plane or a line through the origin.

One very natural way to create a subspace is using a set of vectors. Find all the ways to
combine them, then that will be a subspace, as you’ll prove below.

Definition 11 (Span of a set of vectors). Let {e1, . . . , em} be a set of vectors in Rn. Then
we call span {e1, . . . , em} the set:{

m∑
i=1

λiei, λ1, . . . , λm ∈ R

}

Visualising Span

The span of a set of vectors is intuitively the smallest subspace that contains those vectors.

Proposition 5. Let F , G be two vector subspaces of Rn. Then F ∩G is a vector space,
where for two sets A,B, we denoted A ∩ B the intersection of A and B, i.e., the set of
elements that are in both A and B.

Proof. Exercise.

Usually, when F,G are vector subspaces of Rn, F ∪ G is not a vector space (here, we
denoted A∪B the union of two sets A and B, i.e., the set of elements that are in either A
or B). Think about why, and try to characterize when the union of two vector subspaces
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is a vector space.

3.1.2 Sum of Vector Subspaces

Definition 12 (Sum of vector subspaces). Let n ∈ N∗. Let F and G be two vector
subspaces of Rn. Then the set:

{xF + xG : xF ∈ F, xG ∈ G}

is called the sum of F and G, and is denoted F +G.

Proposition 6. Let F , G be two vector subspaces of Rn. Then F +G is a vector space.

Proof. Exercise!

Casually Explained

Sums of vector subspaces will show up a lot, often, we will decompose Rn into smaller
chunks (see the rank-nullity theorem). A particular important case is when the sum of
two vector subspaces is direct, e.g., when F and G only overlap at 0.

Definition 13 (Direct sum of vector subspaces). Let F , G be two vector subspaces of Rn.
Then F and G are called “in direct sum” if F ∩ G = {0}. Their sum is then denoted
F ⊕G.

Characterization of the direct sum of vector subspaces

Proposition 7. Let F,G be two subspaces, then F and G are in direct sum if and only if

∀x ∈ F +G,∃!(x1, x2) ∈ F ×G such that x = x1 + x2.

Proof

Proof. Let us first assume that the decomposition in F + G is unique, i.e., ∀x ∈ F +
G,∃!(x1, x2) ∈ F ×G such that x = x1 + x2. Let us show that F ∩G = {0}. Since F and
G are subspaces, we immediately have {0} ⊂ F ∩ G (do you see why?). We are left to
show F ∩G ⊂ {0}. Let us take x ∈ F ∩G. x, then admits two decompositions:

x = x︸︷︷︸
∈F

+ 0︸︷︷︸
∈G

= 0︸︷︷︸
∈F

+ x︸︷︷︸
∈G

By assumption, the decomposition is unique, therefore, x = 0. This proves F ∩ G ⊂ {0}
and therefore F ∩G = {0}.
Let us now assume that F ∩ G = {0}. Take x ∈ F + G admitting two decompositions
x = x1+x2 = x′

1+x′
2 with x1, x

′
1 ∈ F and x2, x

′
2 ∈ G. We therefore have x1−x′

1 = x′
2−x2.

Since F and G are subspaces we have that x1 − x′
1 ∈ F and x′

2 − x2 ∈ G. Furthermore,
since x1 − x′

1 = x′
2 − x2, we have x1 − x′

1 ∈ G. Therefore, x1 − x′
1 ∈ F ∩ G, implying
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x1 = x′
1 since by assumption F ∩G = {0}. We conclude similarly that x2 = x′

2, therefore
the decomposition is unique.

One additional desirable property we could wish for vector spaces in direct sum is that
they span the entire space. In that case, we say that F is the complementary of G (in the
vector space sense).

Complementary of a vector subspace

Definition 14 (Complementary of a vector subspace). Let F , G be two vector subspaces
of Rn. Then F and G are called complementary if

1. F and G are in direct sum

2. F ⊕G = Rn

Complementary of a vector subspace

Proposition 8 (Complementary of a vector subspace). Any vector subspace F of Rn has
a complementary subspace G in Rn.

The proof is outside of the scope of this class.

Characterization of the complementary of a vector subspace

Corollary 1. Let F,G be two subspaces of Rn. Then F,G are complementary subspaces
if and only if

∀x ∈ Rn,∃!(x1, x2) ∈ F ×G such that x = x1 + x2.

Proof. This is a direct corollary of Proposition 7 and the definition of the complementary
of a vector subspace.

3.2 Family of Vectors

We are going to define three sets of families of vectors that are of paramount importance
in linear algebra. They will tell us when we can decompose vectors, and when we can do
it in only one way.

• Spanning sets

• Linearly independent sets

• Bases
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3.2.1 Spanning Sets

Definition 15 (Spanning Set). Let n ∈ N∗, F be a vector subspace of Rn and
S = {e1, . . . , em} be m vectors in F . Then S is said to be a spanning set of F if
∀x ∈ F,∃λ1, . . . , λm s.t.

x =

m∑
i=1

λiei.

We can connect the span of a set of vectors to the notion of spanning set.

Proposition 9. Let S = {e1, . . . , em} be a set of vectors in Rn. Then S is a spanning set
of F if and only F ⊂ span {e1, . . . , em}.

Proof. Exercise!

Intuitively

Spanning sets provide a way to describe any vector x ∈ Rn (or a subspace F ) using m
scalars, λ1, . . . , λm. This means the vectors reach everywhere in the space.

3.2.2 Linearly (In)dependent Sets

Spanning sets let us travel everywhere in the space by combining members of the set.
However, there may be more than one way to reach the same vector. it would be nice if
we were able to enforce that for any x, that there exists a unique set of scalars that can
be used to represent x. This is what the concept of linearly independent vectors is about:

Definition 16 (Linearly dependent set of vectors). A set S = {e1, . . . , em} of vectors is
called linearly dependent if, there exists a i0 ∈ [m], and λ1, . . . , λi0−1, λi0+1, λn s.t

ei0 =

m∑
i=1,i̸=i0

λiei
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Definition 17 (Linearly independent set of vectors). A set S = {e1, . . . , em} of vectors
is called linearly independent if it is not linearly dependent.

Proposition 10.

• S is linearly dependent i.i.f ∃λ1, . . . , λm ̸= (0, . . . , 0) s.t.
m∑
i=1

λiei = 0.

• Conversely, S is linearly independent i.i.f
m∑
i=1

λiei = 0 =⇒ λ1 = · · · = λm = 0.

Proof. Let’s assume λ1e1 + · · · + λmem = 0 holds with some non-zero coefficient, λk0
.

Dividing by λk0
and rearranging we find:

ek0 = −
K∑

i=1,k ̸=k0

λi

λk0

em

There are two cases. Either all the other coefficients , {λi}li=1,i̸=k0
, are zero, in which case

ek0
= 0, and S is linearly dependent. Alternatively, another λi is non-zero, and we have

found that one vector in the set can be expressed as a linear combination of the others, so
S is linearly dependent. Therefore, if S is linearly independent λ1 = ... = λm = 0.

3.2.3 Bases

Spanning sets let us get everywhere in the space, but did not guarantee unique decom-
positions. Linearly independent vectors uniquely decompose all vectors in their span, but
don’t necessarily reach everywhere. A basis combines these two nice properties:

Definition 18 (Basis). Let n ∈ N∗, F be a vector subspace of Rn and S = {e1, . . . , em}
be a set of k vectors in F . Then S is said to be a basis for F if it is both a spanning set
for F linearly independent.

Proposition 11. If S is a basis for F , then for any xF , ∃! {λ1, . . . , λm} such that

x =

k∑
i=1

λiei

Motivation: a basis provides a unique way to describe vectors in Rn (or a subspace F )

The definition of a basis above transcribes in formal terms that for any x in Rn (or a
subspace F ), there exists a unique set of k scalars that can be used to “describe” x. This
description procedure is thus

• powerful enough to describe any vector in the vector space;
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• tight enough to describe each vector in a unique way.

3.2.4 Dimension of a Vector Space

Theorem 1. Let n ∈ N∗. Let F be a vector subspace of Rn.

• There exists a basis for F .

• All bases of F have the cardinality m, called the dimension of F (or dim(F)).

Additionally, let S = {e1, . . . , ep} a set of p vectors in F .

• If S is linearly independent, then:

– p ≤ dim(F ).

– if p = dim(F ), then S is a basis for F .

• If S is a spanning set for F , then:

– p ≥ dim(F ).

– if p = dim(F ), then S is a basis for F .

Remark

After an elaborate journey we have arrived at a formalization of the very intuitive notion
of the dimension of a space. You can check that it matches your intuition for one, two, or
three dimensional space. But, by formalizing it, you can travel to some far off mathematical
land, and if you still find something that obeys these rules you will know it matches your
idea of a dimension.

Dimesion of subspaces of vector subspaces

Proposition 12. Let E,F be a two finite dimensional subspace of Rn s.t. F ⊂ E. Then
dim(F ) ≤ dim(E), and dim(F ) = dim(E) ⇐⇒ E = F .

Dimensionality of the direct sum of vector subspaces

Lemma 1. Let F , G be two vector subspaces of Rn that are in direct sum. Then:

dim(F ⊕G) = dim(F ) + dim(G)

Proof. If B is a basis of F and C is a basis of G, then B ∪ C is a basis of F ⊕ G. Since
the basis of a vector space has the same cardinality as its dimension, we conclude the
result.
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Dimensionality of the sum of vector subspaces

Proposition 13. Let F , G be two vector subspaces of Rn. Then:

dim(F +G) = dim(F ) + dim(G)− dim(F ∩G)

Proof. Let F ′ be the complement of F ∩ G in F , e.g. F ′ ⊕ (F ∩ G) = F . One has
F ′+G = F +G. Note moreover that F ′ and G are in direct sum. Conclude the proof.
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3.3 Exercise Sheet 3: Subspaces, Bases

Vector Subspaces

Exercise 14. Let {e1, . . . , em} be a set of vectors in Rn. Then F = span {e1, . . . , em} is
a vector subspace of Rn.

Solution.

• Let us take two elements x1, x2 of F , by the definition of the span, ∃λ1, . . . , λm and
µ1, . . . , µm such that x1 =

∑m
i=1 λiei and x2 =

∑m
i=1 µiei. Let us take θ ∈ R. Since

θ × x1 + x2 =

m∑
i=1

(θλi + µi)ei

belongs to F , we conclude that F is a vector subspace.

■

Exercise 15. Show that the set F = {(x, y, 0) | x ∈ R, y ∈ R} is a subspace of R3.

Solution. Let us take two elements z1, z2 of F , by the definition of F , ∃x1, y1, x2, y2 ∈ R
such that z1 = (x1, y1, 0) andz2 = (x2, y2, 0). Let us take λ ∈ R. Since

λ× z1 + z2 = (λx1 + x2, λy1 + y2, 0)

belongs to F , we conclude that F is a vector subspace. ■

Exercise 16. Write down a subset of Rn that is not a subspace

Solution. Many options, for example {(100, 0), (50, 0)}. ■

Exercise 17. Show that the origin is a member of every subspace.

Solution. Take a subspace F . Take any element f ∈ F . λf ∈ F,∀λ ∈ R. Therefore choose
λ = 0, then 0f = 0, and hence 0 ∈ F . ■

Exercise 18. Let E be a vector subspace of Rn, F,G be two vector subspaces of E. Show
that F ∪G is a vector subspace of E if and only if F ⊆ G or G ⊆ F .

Solution. Let’s first show that if F ⊆ G, F ∪ G is a subspace. This is clear because
F ∪ G = G and we already know G is a vector subspace. The same argument holds if
G ⊆ F .
Now we have to go the other way, showing that if F ∪ G is a subspace, it must be that
F ⊆ G or G ⊆ F . Let’s say F ∪ G is a subspace but F ⊈ G and G ⊈ F . Since F
is not a subset of G, ∃x ∈ F, x /∈ G, similarly ∃y ∈ G, y /∈ F . Both x ∈ F ∪ G and
y ∈ F ∪ G, then, since it is a subspace x + y ∈ F ∪ G. Therefore either x + y ∈ F , but
then x+ y − x = y ∈ F , since x ∈ F and F is a subspace, which breaks our assumption.
Or x+ y ∈ G, but similarly then x+ y − y = x ∈ G, which again breaks our assumption.
Therefore one must be a subset of the other. ■

Exercise 19. 1. Which of these sets are vector subspaces of R3?
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(a) {(x, y, z) : (x− 2y)z = 0}
(b) {(x, y, z) : x− 2y = z}
(c) {(x, y, z) : x− 2y = y + z = 1}
(d) {(x, y, z) : x− 2y = x+ y + z = 0}

2. Let m,n ∈ N.

(a) is Rm a vector subspace of Rn?

(b) Let E ⊂ Rn the sets of vectors x in Rn such that xk = 0 for k > m. Is E a
vector subspace of Rn?

Solution. 1. (a) Nope, given (a, b, c) and (a′, b′, c′) we can add them to get a vector
that doesn’t satisfy the property: (a+ a′ − 2(b+ b′))(c+ c′) = (a− 2b)c+ (a′ −
2b′)c′ + (a− 2b)c′ + (a′ − 2b′)c = (a− 2b)c′ + (a′ − 2b′)c.

(b) Yes, because if a − 2b = c, then λa − 2λb = λc. Similarly given (a, b, c) and
(a′, b′, c′) in the set we can see that (a + a′, b + b′, c + c′) is in the set, since:
a+ a′ − 2(b+ b′) = a− 2b+ a′ − 2b′ = c+ c′.

(c) Yes. Similar arguments to above.

(d) Yes. Similar arguments to above.

2. (a) Only if m = n. If m ̸= n then the elements of the two spaces are different, a
2D vector can’t live within 3D space. ((1, 2, 0) is a 3D vector that lives in a 2D
plane, but that is different from the 2D vector (1, 2))

(b) Yes. Let’s check x + λy for x, y ∈ E, λ ∈ R. The first m dimensions are
arbitrary, but the last n − m dimensions will always be 0, since the sum and
scaling of 0 vectors is zero.

■

Sums of Vector Subspaces

Exercise 20. In each case, are the vector subspaces F and G in direct sum? Comple-
mentary?

1. E = R2, F = span {(1, 0)}, G = {0}

2. E = R2, F = span {(1, 0)}, G = span {(0, 1)}

3. E = R2, F = span {(1, 0)}, G = span {(1, 1)}

Solution. 1. Since F ∩ G = {0} they are in direct sum. However (0, 1) /∈ F
⊕

G,
therefore they are not complementary.

2. Again F ∩G = {0} so they are in direct sum (To show this you can study a vector
that is in F ∩G: (a, b) = λ(1, 0) = µ(0, 1), from which you conclude a = b = 0). But
now F

⊕
G = R2, since for any x = (a, b) ∈ R2, we can choose x = a(1, 0) + b(0, 1).

3. Similar arguments show you that they are in direct sum and are complementary.
■
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Bases, Linear Dependence, Dimension

Exercise 21. Show that if any vector in the set S = {e1, . . . , em} is the zero-vector (the
origin), the set is linearly dependent.

Solution. {e1, . . . , em} is linearly dependent if
∑m

i=1 µiei = 0 for some nonzero set of
{µi}mi=1. Assume there is a zero element in the set, ek0

, then we can set all µi to zero
except µk0 and this linear combination will equal zero for a non-zero set of µ. Hence S is
linearly dependent. ■

Exercise 22. Show that if S is linearly independent, for any x ∈ span(S), there exists a

unique (λ1, . . . , λm) such that x =
k∑

i=1

λiei.

Solution. Let’s show this by assuming both S is linearly independent and there are multiple
ways of writing x =

∑k
i=1 λiei we get a contradiction, hence the converse must be true,

that S being linearly independent implies a unique decomposition. Then x =
∑k

i=1 λiei =∑k
i=1 λ

′
iei where these are two different sets {λi}, and {λ′

i}. Then:

k∑
i=1

(λi − λ′
i)ei = 0

Now one case is that {λi} and {λ′
i} differ in only one element, let’s call it k0, then only

(λk0
− λ′

k0
) is non-zero, and (λk0

− λ′
k0
)ek0

= 0 = ek0
, which by our previous exercise,

breaks the assumption of linear independence.
Alternatively there are multiple non-zero (λi −λ′

i) values. Divide the whole expression by
one of them, e.g. k0, then:

ek0
+

k∑
i=1,i̸=k0

λi − λ′
i

λk0
− λ′

k0

ei = 0

Hence we can write one vector as a linear combination of the others, completing the
proof. ■

Exercise 23. Determine the dimension of the span of the following vectors (the last two
ones require you to know how to solve systems of equations)

• u = (1, 2, 0), v = (−1, 1, 1)

• u = (1, 0, 2), v = (0, 2, 1), w = (−1, 4, 2)

• u = (1, 1,−2), v = (1, 3, 2), w = (−2, 0, 1), z = (1,−1, 0)

Solution. First case: u = (1, 2, 0), v = (−1, 1, 1)
Suppose αu+ βv = 0. That gives:

α(1, 2, 0) + β(−1, 1, 1) = (0, 0, 0).

Compute:
(α− β, 2α+ β, β) = (0, 0, 0).
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From the third coordinate: β = 0, then from the first: α = 0. Hence, the only solution is
the trivial one, and the vectors are linearly independent.

⇒ dim(span{u, v}) = 2 .

Second case: u = (1, 0, 2), v = (0, 2, 1), w = (−1, 4, 2)
Step 1: Check if u and v are linearly independent.
Assume αu+ βv = 0. Then:

α(1, 0, 2) + β(0, 2, 1) = (0, 0, 0) ⇒ (α, 2β, 2α+ β) = (0, 0, 0).

From the first coordinate: α = 0. From the second: 2β = 0 ⇒ β = 0. Then the third
equation is also satisfied: 2 · 0 + 0 = 0.
So the only solution is α = β = 0, and u, v are linearly independent.

Step 2: Is w ∈ span{u, v}?
We ask whether there exist α, β ∈ R such that:

α(1, 0, 2) + β(0, 2, 1) = (−1, 4, 2).

Compute each component:
- First coordinate: α = −1
- Second coordinate: 2β = 4 ⇒ β = 2
- Third coordinate: 2α+ β = 2(−1) + 2 = −2 + 2 = 0, but we want 2. Contradiction.
So no such α, β exist, and w /∈ span{u, v}.
Conclusion: u and v are linearly independent, and w is not in their span, so {u, v, w} is
linearly independent.

dim(span{u, v, w}) = 3 .

Third case: u = (1, 1,−2), v = (1, 3, 2), w = (−2, 0, 1), z = (1,−1, 0)
We are given four vectors in R3, so they must be linearly dependent (since the dimension
of R3 is 3). But to determine whether their span has dimension 3 or less, we now verify
whether three of them are linearly independent.

Step 1: Check if u, v, w are linearly independent.
Assume:

αu+ βv + γw = 0.

That is,
α(1, 1,−2) + β(1, 3, 2) + γ(−2, 0, 1) = (0, 0, 0).

Compute each coordinate:

1. First: α+ β − 2γ = 0

2. Second: α+ 3β = 0

3. Third: −2α+ 2β + γ = 0
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From (2): α = −3β
Substitute into (1):

−3β + β − 2γ = 0 ⇒ −2β − 2γ = 0 ⇒ γ = −β

Now substitute into (3):

−2(−3β) + 2β + (−β) = 6β + 2β − β = 7β = 0 ⇒ β = 0 ⇒ α = 0, γ = 0.

Hence, the only solution is the trivial one, so u, v, w are linearly independent.

Step 2: The set {u, v, w, z} is linearly dependent (since it has 4 vectors in R3), but since
{u, v, w} is already linearly independent, the dimension of the span is 3.

dim(span{u, v, w, z}) = 3 .

■

Exercise 24. Let u, v, w ∈ Rn, and α, β, λ ∈ R, such that α, β ̸= 0, and

αu+ βv + λw = 0

Show that span(u,w) = span(v, w).

Solution. Given x ∈ span(u,w) we know x = au + bw. But using the constraint we can
also write this as x = bw+ a(− λ

αw− β
αv) = (b− aλ

α )w− aβ
α v, so is in span(u,w). Similar

arguments get you back the other way. ■

Bases

Exercise 25.

• Show that {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for R3. This basis is called the canon-
ical basis for R3.

• In general, show that for n ∈ N⋆, then the set {e1, . . . , en}, where (ei)i = 1 and
(ej)j ̸=i = 0, is a basis for Rn. This basis is called the canonical basis

• Show that {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis for R3.

• In general, show that for n ∈ N⋆, then the set {e1, . . . , en}, where (ei)j = 1 if j ≤ i
and (ej)j>i = 0, is a basis for Rn.

Solution. 1. Show that {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for R3.
This set is linearly independent because any linear combination

α(1, 0, 0) + β(0, 1, 0) + γ(0, 0, 1) = (0, 0, 0)

implies α = β = γ = 0, and it spans R3 since any vector (x, y, z) ∈ R3 can be written as:

x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

So the canonical basis of R3 is:

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} .
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2. Show that for any n ∈ N⋆, the set {e1, . . . , en}, where (ei)j = δij, is a basis for
Rn.
The vectors e1, . . . , en are defined by:

(ei)j =

{
1 if j = i,

0 otherwise.

Any vector x = (x1, . . . , xn) ∈ Rn can be written as:

x = x1e1 + · · ·+ xnen,

so the set spans Rn. The representation is unique, and any linear combination

n∑
i=1

λiei = 0 ⇒ λi = 0 for all i

implies linear independence.
Hence, {e1, . . . , en} is a basis, called the canonical basis of Rn.

3. Show that {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis for R3.
Let us check linear independence.
Suppose

α(1, 0, 0) + β(1, 1, 0) + γ(1, 1, 1) = (0, 0, 0).

Compute the sum:
(α+ β + γ, β + γ, γ) = (0, 0, 0).

From the third coordinate: γ = 0. Then second: β + 0 = 0 ⇒ β = 0. Then first:
α+ 0 + 0 = 0 ⇒ α = 0.
So the set is linearly independent. There are 3 vectors in R3, so they form a basis.

dim(span) = 3, and the set is a basis.

4. Show that for n ∈ N⋆, the set {e1, . . . , en}, where (ei)j = 1 if j ≤ i, and 0
otherwise, is a basis for Rn.
We define e1 = (1, 0, 0, . . . , 0), e2 = (1, 1, 0, . . . , 0), e3 = (1, 1, 1, 0, . . . , 0), etc., up to
en = (1, 1, . . . , 1).
We show that this set is linearly independent and spans Rn.
We proceed by induction or triangular argument. Let E = {e1, . . . , en}, and suppose:

n∑
i=1

λiei = 0.

Look at the last coordinate: only en contributes to it (equal to 1), so λn = 0. Then
consider the (n − 1)-th coordinate: only en−1 and en contribute to it, and λn = 0, so
λn−1 = 0, etc.
This descending chain gives λi = 0 for all i, so the vectors are linearly independent.
Since we have n linearly independent vectors in Rn, they form a basis.

{e1, . . . , en} is a basis for Rn.

■
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Bases of Subspaces

Exercise 26. Show that the subset of R3 given by: E =
{
(x, y, z) ∈ R3 : x+ y + z = 0

}
is a subspace of R3. Find a basis for E and determine its dimension.

Solution. 1. Show that E ⊆ R3 is a subspace.
We are given:

E =
{
(x, y, z) ∈ R3 : x+ y + z = 0

}
.

To show that E is a subspace of R3, we verify the three subspace properties:

• Closed under addition: Let u = (x1, y1, z1) ∈ E and v = (x2, y2, z2) ∈ E, so
x1 + y1 + z1 = 0 and x2 + y2 + z2 = 0. Then

(x1 + x2) + (y1 + y2) + (z1 + z2) = (x1 + y1 + z1) + (x2 + y2 + z2) = 0 + 0 = 0.

Hence, u+ v ∈ E.

• Closed under scalar multiplication: Let λ ∈ R and (x, y, z) ∈ E, so x+y+z = 0.
Then

λx+ λy + λz = λ(x+ y + z) = λ · 0 = 0.

Thus, λ(x, y, z) ∈ E.

Therefore, E is a subspace of R3.

2. Find a basis for E and its dimension.
We solve the equation:

x+ y + z = 0 ⇐⇒ x = −y − z.

So every element (x, y, z) ∈ E can be written as:

(x, y, z) = (−y − z, y, z) = y(−1, 1, 0) + z(−1, 0, 1).

This shows that:
E = span {(−1, 1, 0), (−1, 0, 1)} .

We now prove that these two vectors are linearly independent. Suppose:

α(−1, 1, 0) + β(−1, 0, 1) = (0, 0, 0).

Then:
−α− β = 0, α+ 0× β = 0, 0× α+ β = 0.

From the second equation: α = 0, and from the third: β = 0. Plugging into the first
confirms the equation is satisfied. Hence, the only solution is α = β = 0, so the vectors
are linearly independent.

Basis of E : {(−1, 1, 0), (−1, 0, 1)} , Dimension: 2 .

■
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3.4 Coordinates

3.4.1 Definition and Examples

Definition 19 (Coordinates). Let F be a m-dimensional subspace of Rn. Given a basis
BF := {e1, . . . , em}. Let x ∈ F , then since BF is a basis, there exists unique scalars

λ1, . . . , λm ∈ R such that x =
k∑

i=1

λiei. Then the object [x]BF
= (λi)1≤i≤k ∈ Rk is called

its vector of coordinates in the basis BF .

Why is the notion of coordinates useful?

Coordinates provide any vector x in some arbitrary m-dimensional subspace F with a
description in terms of m numbers. These numbers depend on the basis BF chosen; thus,
to one vector x, we can associate as many set of coordinates as there are bases in F !

A visual explanation

Below is a drawing showing the impact of the basis choice on the coordinates of vectors in
R2. Both figures choose a different basis B, and represent “isolines”, e.g., lines of constant
first or second coordinate value z0, for some equally spaces values of z0: (-1, -0.5, ..., 1).
The two arrows are used to denote the two basis vectors of each basis.

Figure 3.1: Isolines of R2 for the canonical ba-
sis {(1, 0), (0, 1)}

Figure 3.2: Isolines for the basis{
(1,− 1

2
), (− 1

2
, 1)

}
Canonical Bases do not always exist!

For the specific yet important case of F = Rn, the numbers (x1, . . . , xn) forming the vector
x := (x1, . . . , xn) ∈ Rn are 1-1 correspondence with coordinates of x in the canonical basis,
which is why this basis deserves a name (canonical has to be understood as “natural”).
However, canonical bases do not always exist for all vector spaces, as the next exercise
shows.

Exercise 27. Let F ⊂ R2 :=
{
x ∈ R2 : x1 + x2 = 0

}
. Give a basis for F . F ⊂ Rn :=
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{
x ∈ Rn :

n∑
i=1

xi = 0

}
. Give a basis for F .

Solution. 1. Case of F ⊂ R2 defined by x1 + x2 = 0:
We want to describe the subspace:

F =
{
(x1, x2) ∈ R2 | x1 + x2 = 0

}
.

We can express every vector in F as:

(x1, x2) = (x1,−x1) = x1 · (1,−1).

So every element of F is a scalar multiple of the vector (1,−1), and this vector is nonzero.
Therefore,

{(1,−1)} is a basis for F, and dim(F ) = 1.

2. General case: F ⊂ Rn defined by
∑n

i=1 xi = 0:
This is a linear subspace of Rn defined by one linear equation, so it has dimension n− 1.
To build a basis, observe that we can solve the constraint by expressing the last coordinate
in terms of the others:

xn = −
n−1∑
i=1

xi.

So any x ∈ F has the form:

x = (x1, . . . , xn−1,−x1 − · · · − xn−1).

For each i ∈ {1, . . . , n− 1}, define:

vi = (0, . . . , 1, . . . , 0︸ ︷︷ ︸
i-th position

, 0, . . . , 0, −1),

i.e., vi ∈ Rn has 1 at the i-th position, 0 elsewhere (except at the last coordinate, which
is −1).
Conclusion:

F = Span {v1, . . . , vn−1} .

This set forms a basis for F , and dim(F ) = n− 1. You should check that {v1, . . . , vn−1}
is indeed a basis. ■

In that case, the coordinates of some x ∈ F with respect to BF are different from the
numbers in x ∈ F . Thus, in that case, there is no clear one-one correspondence between
the traditional representation of vectors in F and its coordinate in any given basis!



48 CHAPTER 3. VECTOR SUBSPACES, BASES, COORDINATES

3.5 Changing Basis with Matrices

Definition

Let n ∈ N∗, and let B := {e1, . . . , en} , B′ := {f1, . . . , fn} be two bases of Rn. We define
the change of basis matrix from B to B′, denoted PB′

B , as the matrix given by:

((PB′

B )ij)1≤i,j≤n = (([ej ]B′)i)1≤i,j≤n =

 | . . . |
[e1]B′ . . . [en]B′

| . . . |



Given some x ∈ E, and two basis B,B′ of E, PB,B′ allows to compute the coordinates of
x in the basis B′ from the coordinates of x in the basis B:

Proposition 14. Let E be a n-dimensional vector space, and B,B′ two bases of E. Then,
for all x ∈ E, we have that:

[x]B′ = PB′

B [x]B

Proof. Let x ∈ E and let (λ1, . . . , λn) := [x]B be the coordinates of x in B. Then

x =

n∑
i=1

λiei

=

n∑
i=1

λi

n∑
j=1

([ei]B′)jfj

=

n∑
j=1

(
n∑

i=1

([ei]B′)jλi

)
fj

=

n∑
i=1

 n∑
j=1

([ej ]B′)iλj

 fi

=

n∑
i=1

(PB′

B [x]B)ifi

Thus, we have that [x]B′ = (PB′

B [x]B)1≤i≤n = PB′

B [x]B , which concludes the proof.

Informal discussion: why should we care about change of basis matrices

Change of basis matrices will appear when studying the matrix-representation of linear
maps. As we will see, some linear maps are best represented (in matrix form) using a
particular basis, which may not be the original basis the map was represented with in the
first place. The link between its original representation and its “best representation” will
involve a change of basis matrices.
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Familiarizing Exercise

Exercise 28. In the following settings, you will be given a vector space E, two basis B
and B′ and the coordinates [x]B of some vector x in the basis B. In each case, write the
change of basis matrix PB′

B , and compute [x]B′

• n = 2, B = {(1, 0), (0, 1)} B′ = {(2, 0), (0, 2)}, [x]B = (1, 1).

• n = 3, B := {(a1, a2, a3), (b1, b2, b3), (c1, c2, c3)} where the ai, bi, ci, i ∈ {1, 2, 3}
are picked such that B actually forms a basis, and B′ := {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
[x]B = (1, 1, 1).

Solution. First case: We are told [x]B =

(
1
1

)
, so we compute [x]B′ = PB′

B · [x]B .

Each column of PB′

B is the coordinate of a basis vector of B in the basis B′. That is:

(1, 0) = 1
2 (2, 0) ⇒ [e1]B′ =

(
1
2
0

)
,

(0, 1) = 1
2 (0, 2) ⇒ [e2]B′ =

(
0
1
2

)
.

So:

PB′

B =

(
1
2 0
0 1

2

)
, [x]B′ = PB′

B · [x]B =

(
1
2 0
0 1

2

)(
1
1

)
=

(
1
2
1
2

)
.

Second case: Let B = {v1, v2, v3} ⊂ R3, where:

v1 = (a1, a2, a3), v2 = (b1, b2, b3), v3 = (c1, c2, c3).

We are told that:

[x]B =

1
1
1

 ,

which means:
x = 1 · v1 + 1 · v2 + 1 · v3 = v1 + v2 + v3.

Step 1: Change of basis matrix PB′

B . The matrix PB′

B is the matrix whose j-th column
is the coordinate vector of vj in the basis B′ (i.e., its coordinates in the canonical basis).
So:

PB′

B =

a1 b1 c1
a2 b2 c2
a3 b3 c3

 .

Step 2: Compute [x]B′ .
Using:

[x]B′ = PB′

B · [x]B = PB′

B ·

1
1
1

 ,

we get:

[x]B′ = v1 + v2 + v3 =

a1 + b1 + c1
a2 + b2 + c2
a3 + b3 + c3

 .
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Conclusion: The vector x, originally expressed in basis B by coordinates (1, 1, 1), has
canonical coordinates:

[x]B′ = v1 + v2 + v3 =

a1 + b1 + c1
a2 + b2 + c2
a3 + b3 + c3

 .

■

Properties of Change of Basis Matrices

The following convenient properties hold for change of basis matrices:

Chaining change of basis matrices

Proposition 15. Let E be a n-dimensional vector space. Let B,B′, B′′ be three bases of
E. Then we have:

PB′′

B = PB′′

B′ PB′

B .

Proof. Let B := {e1, . . . , en} , B′ := {f1, . . . , fn} , B′′ := {g1, . . . , gn}, for some ei, fi, gi ∈
Rn, i = 1, . . . , n. We are going to express ei in the basis B′′, using the basis B′ as a pivot
to show the desired equality.

ej =

n∑
k=1

(PB′

B )kjfk

=

n∑
k=1

(PB′

B )kj

n∑
i=1

(PB′′

B′ )ikgi

=

n∑
i=1

(

n∑
i=1

(PB′′

B′ )ik(P
B′

B )kjgi

=

n∑
i=1

(PB′′

B′ PB′

B )ijgi

Because the last line is also, by definition of change of basis matrix, PB′′

B , we have that

PB′′

B′ PB′

B = PB′′

B .

Change of basis matrices are invertible

Proposition 16. Let E be a n-dimensional vector space, and let B,B′ be two bases of E.
PB′

B is invertible, and (PB′

B )−1 = PB
B′ .

Proof. We can use the chaining property of change of basis matrices: indeed, setting
B′′ = B, we have that:

PB
B = In = PB

B′PB′

B
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PB′

B′ = In = PB′

B PB
B′

From the two equalities above, PB
B′ satisfies the definition of the inverse of PB′

B . Thus,

PB′

B is invertible, and (PB′

B )−1 = PB
B′ .
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3.6 Exercise Sheet 4: Coordinates

Familiarization Exercise

Exercise 29. Let us focus first on the case R2. Let us take one z ∈ R2. By definition,
z := [x, y] for some x, y ∈ R. Then give the coordinates of z in:

• the base B := {[0, 1], [1, 0]},

• the base B′ := {[1, 1], [2,−1]}

Solution.

• for B := {[0, 1], [1, 0]}, then since [z] = x[1, 0] + y[0, 1], then [z]B = [y, x],

• for B′ := {[1, 1], [1,−1]} then since [z] = x+y
2 [1, 1] + x−y

2 [1,−1], then [z]B′ =

[x+y
2 , x−y

2 ].

■

Exercise 30. Let n > 0 and let x = (x1, . . . , xn) ∈ Rn. Give the coordinates of x in

1. The canonical basis

2. The basis B′ = {(1, 0, . . . , 0), (−1, 1, 0, . . . , 0), (0,−1, 1, 0, . . . , 0) . . . , (0, . . . ,−1, 1)}

Solution.

1. We have that:

(x1, . . . , xn) =

n∑
i=1

xiei

thus, by definition, [x]B = (x1, . . . , xn).

2. Let yi be the i-th coordinate of x in the basis B′. Then by definition of coordinates,
we have that

(x1, . . . , xn) =

n∑
i=1

yiei = (y1 − y2, y2 − y3, . . . , yn−1 − yn, yn),

thus, solving for y1, . . . , yn, we have yn = xn, yn−1 = yn+xn−1 = xn+xn−1, etc. It

is possible to show by induction that for a given m ∈ {1, . . . , n}. ym =
n∑

i=m

xi. The

proof is done by induction on m. Therefore,

[x]B′ =

(
n∑

i=1

xi,

n∑
i=2

xi, . . . , xn−1 + xn, xn

)
.

■
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Exercise 31. Let F ⊆ R4 defined by the equation

F = {(x, y, z, t) : x+ z = t+ y}

and G defined by :
G = {(x, y, z, t) : y + t = x− z − y = 0}

• Find the dimension of F and a basis for F , and express the coordinates of the vector
(3, 1, 2, 4) in this basis.

• Find the dimension of G and a basis for G, and express the coordinates of the vector
(4, 1, 3,−1) in this basis.

• Find the dimension of F ∩G and a basis for F ∩G.

Solution. TO DO ■

Exercise 32. Let {v1, . . . , vp} a family of vectors in Rn. Let {u1, . . . , up} defined by:

ui =

i∑
j=1

vj , i ∈ {1, . . . , p}

Show that the family {u1, . . . , up} is linearly independent if and only if the family
{v1, . . . , vp} is linearly independent.

Solution. TO DO ■
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Chapter 4

Inner Products and Orthogonality

4.1 Norm and Inner Product on Rn

The inner product in Rn

Definition 20. Let n ∈ N∗.

⟨x, y⟩ = x⊤y =

n∑
i=1

xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn)

is called the inner product on Rn.

Inner Product

Proposition 17. The inner product ⟨·, ·⟩ is a map from Rn × Rn to R that is

• bilinear (linear in each variable)

• symmetric: ⟨x, y⟩ = ⟨y, x⟩ ∀x, y ∈ E

• positive: ⟨x, x⟩ ≥ 0 ∀x ∈ E

• definite: ⟨x, x⟩ = 0 ⇐⇒ x = 0

Proof. The bilinearity and symmetry are immediate. For the positivity, note that ⟨x, x⟩ =
n∑

i=1

x2
i ≥ 0, and ⟨x, x⟩ = 0 =⇒ x2

i = 0 for all i, implying that x = 0Rn .

Proposition 18 (Cauchy–Schwarz inequality). For all x, y ∈ Rn:

|⟨x, y⟩| ≤
√
⟨x, x⟩

√
⟨y, y⟩

55
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Proof. Let x, y ∈ Rn, and let λ ∈ R. Then, by bilinearity and symmetry, we have that:

⟨x− λy, x− λy⟩ ⇐⇒ ⟨x, x⟩ − 2λ ⟨x, y⟩+ λ2 ⟨y, y⟩ ≥ 0

The l.h.s is a second-order polynomial in λ, and does not change sign. Thus, its discrimi-
nant is negative, e.g.:

4 ⟨x, y⟩2 − 4 ⟨x, x⟩ ⟨y, y⟩ ≤ 0

=⇒ ⟨x, y⟩2 ≤ ⟨x, x⟩ ⟨y, y⟩

=⇒ |⟨x, y⟩ |≤
√
⟨x, x⟩

√
⟨y, y⟩

Definition 21. ∥·∥n :=
(
x 7−→

√
⟨x, x⟩

)
is called the canonical norm for Rn.

Norm

Proposition 19. ∥ · ∥ is such that it is

• homogeneous: ∥x∥ ≥ 0 ∀x ∈ E

• positive: ∥x∥ ≥ 0 ∀x ∈ E

• definite: ∥x∥ = 0 ⇐⇒ x = 0.

• verifies the triangular inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Casually Explained

The norm should be thought of as the “length” of a vector. The norm arising from the
inner product recovers the traditional properties that length have. For instance, for n = 2,

∥(x, y)∥ =
√
x2 + y2

Which is precisely the length of straight line from the origin to the point (x, y). The
triangular identity signals that it is always faster to go from 0 to (x+ y) in a straight line,
than to go from 0 to x, and then from x to x+ y.

Proof. The only nontrivial point is the triangular inequality, which can be proven using
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Proposition 18. Indeed:

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨y, y⟩+ 2 ⟨x, y⟩

= ∥x∥2 + ∥y∥2 + 2 ⟨x, y⟩

≤ ∥x∥2 + ∥y∥2 + 2|⟨x, y⟩|

≤ ∥x∥2 + ∥y∥2 + 2
√
⟨x, x⟩

√
⟨y, y⟩

= ∥x∥2 + ∥y∥2 + 2 ∥x∥ ∥y∥

= (∥x∥+ ∥y∥)2

From which it follows, by taking the square root of the last inequality, that ∥x+ y∥ ≤
∥x∥+ ∥y∥.

The “inner product” norm is not the only norm!

Any function on Rn that satisfies the properties listed in Proposition 19 is called a norm.
The canonical norm is not the only norm on Rn. It is possible to show that the following
functions define a norm on Rn:

• ∥·∥1, defined by ∥x∥1 =
n∑

i=1

|xi|

• ∥·∥∞, defined by ∥x∥∞ = max
i=1,...,n

|xi|

• More generally: ∥·∥p, defined by ∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

Under that notation, the “inner product” norm is ∥·∥2. Their unit spheres (e.g., the set
{x ∈ Rn : ∥x∥ = 1} is drawn below, for the case n = 2.

0

∥x∥p = 1

0

∥x∥p = 1

0

∥x∥p = 1

p = 1 p = 2 p = ∞

Figure 4.1: The unit balls for the norms ∥·∥p, e.g the set
{
x : ∥x∥p = 1

}
of the norms

∥·∥1, ∥·∥2 and ∥·∥∞ in R2.

Exercise 33. Let x, y ∈ R2, such that the angle between x and y is θ. By knowing that
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cos(a+ b) = cos(a) cos(b)− sin(a) sin(b), show that;

⟨x, y⟩ = ∥x∥2 ∥y∥2 cos(θ)

Solution. Let x, y ∈ R2, and suppose the angle between them is θ. Let us write the vectors
in polar coordinates:

x = ∥x∥2(cos(α), sin(α)), y = ∥y∥2(cos(β), sin(β))

Then the angle between x and y is given by θ = β − α. We compute their dot product:

⟨x, y⟩ = ∥x∥2∥y∥2 (cos(α) cos(β) + sin(α) sin(β))

Now, recall the identity:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

Thus,
⟨x, y⟩ = ∥x∥2∥y∥2 cos(β − α)

Since θ = β − α, we obtain:
⟨x, y⟩ = ∥x∥2∥y∥2 cos(θ)

as required. ■

Inner product as a “similarity metric”

Given two vectors x, y such that ∥x∥ = ∥y∥ = 1, ⟨x, y⟩ can be seen as a measure of how
similar x and y are:

• ⟨x, y⟩ is maximized when x = y.

• ⟨x, y⟩ is minimized when x = −y.

• in R2 - we will see how that notion carries over to Rn - ⟨x, y⟩ is 0 when x and y are
orthogonal.

The view of inner products as a measure of similarity motivates its use in neural networks,
in which the firing rate of a neuron is often chosen to take the form:

ϕ(w⊤x)

where x is the input, and w is the “receptive field” of the neuron. The nonlinearity
indicates the saturation of the neuron, which cannot reach arbitrarily high (or negative)
firing rates, and is often chosen to cap the firing rate from 0 to some positive value a.
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4.2 Orthogonality, Orthogonal Basis, Orthogonal Subspaces

The concept of orthogonality will allow us to construct a new kind of basis whose elements
are “independent” in a sense that we will make precise later.

Definition 22. Let nN∗,

• Let x, y ∈ Rn. Then x, y are called orthogonal if ⟨x, y⟩ = 0.

• A set of vectors {x1, . . . , xn} is called orthogonal if ⟨xi, xj⟩ = 0 for all i ̸= j.

• A set of vectors {x1, . . . , xn} is called orthonormal if it is orthogonal and ∥xi∥ = 1
for all i.

• A basis B of E is called orthogonal if B is an orthogonal set, and orthonormal
if B is an orthonormal set.

Important Example

The canonical basis {e1, . . . , en} is an orthonormal basis of Rn.

4.3 Representation of vectors in Orthonormal Bases

The coefficients of a vector x in an orthonormal basis B are easy to compute:

Decomposition in Orthogonal Bases

Theorem 2. Let Rn be an Euclidean space, and let B = {e1, . . . , en} be an orthonormal
basis of Rn. Then

x =

n∑
i=1

⟨x, ei⟩ ei

implying that
([x]B)i = ⟨x, ei⟩

Proof

Proof. By definition, we have x =
n∑

i=1

[x]B,i ei. Taking the scalar product with ej and

leveraging the orthonormality of B gives the desired result.
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4.4 Exercise Sheet 5: Orthogonality

Familiarizing Exercise

Exercise 34.

• Let x = (1, 2, 3), y = (−1, 1, 0). Compute: ⟨x, y⟩, ∥x∥, ∥y∥.

• Construct an orthonormal basis of R2 that is not the canonical basis.

• Construct an orthonormal basis of Rn that is not the canonical basis.

• Let F = {(x, y, z) : x+ y + z = 0}. Find an orthonormal basis for F . (Hint: find a
standard basis first, and then try to “orthonormalize it”—ask teacher for help!)

• Construct a basis of R2 which is not orthonormal.

Solution. TO DO ■

Orthogonal Complements

Exercise 35. Let F ⊂ Rn be a vector subspace. Let F⊥ be the set defined as:

F⊥ = {x ∈ Rn : ∀y ∈ F, ⟨x, y⟩ = 0}

Show that:

• F⊥ is a vector subspace of Rn.

• F and F⊥ are in direct sum

In fact, it can be shown that F ⊕ F⊥ = Rn. F⊥ is called the orthogonal complement of
F .

Solution. TO DO ■

Exercise 36. Given two square matrices A,B ∈ Mn(R), we define the function f(A,B)
as:

f(A,B) = Tr(A⊤B)

where we recall that Tr(A) =
n∑

i=1

aii. Show that:

• f is symmetric, i.e.: f(A,B) = f(B,A) for all A,B ∈ Mn(R).

• f is bilinear, i.e.: f(λA + µB,C) = λf(A,C) + µf(B,C) for all λ, µ ∈ R and
A,B,C ∈ Mn(R).

• f is positive definite, i.e.: f(A,A) ≥ 0 for all A ∈ Mn(R), and f(A,A) = 0 if and
only if A = 0.

f can be shown to serve as the equivalent of an inner product, for the space of square
matrices.

Solution. TO DO ■



Chapter 5

Preliminaries on Functions

5.1 Mappings

5.1.1 First Definitions

Mappings

Definition 23 (Mapping - slightly informal definition). A mapping f consists of three
elements:

• a domain or set of definition E;

• a co-domain F ;

• a mechanism or relationship that associates to every element x of E a unique element
f(x) of F .

We use the following notation to summarize this information:

f : E → F
x 7→ f(x)

We also say that f is defined on E to indicate that the set of definition is E and that f
maps to values in F to indicate that the co-domain is F .

Casually Explained: The notation f(x)

For a given function f and some x ∈ E, the notation f(x) often lays out a procedure to
compute the y = f(x). However, a procedure may not always stop, and thus may never
produce an output (think for instance of procedures defined recursively f(x) = x×f(x−1)).
The definition of a mapping gets rid of having to deal with such concerns by abstracting
away the procedure, and only characterizing a function through its input-output pairs. In
practice of course, most procedures of interest are known to actually produce an output
(for instance, f(x) = x× x).

61
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Identity Mapping

Definition 24 (Identity mapping). If E is any set, we can define an identity application
idE as follows:

idE : E → E, x 7→ x

(for every x ∈ E, we have idE(x) = x).

5.1.2 Compositions of maps

Compositions of two maps

Definition 25. Let E,F,G be three sets, f : E 7−→ F and g : F 7−→ G. The composition
of f and g, denoted g ◦ f , is the map

g ◦ f : E −→ G

x 7−→ g ◦ f(x) = g(f(x))

Iterating compositions of maps

Definition 26. Let E be a set, f : E 7−→ E a map, and n ∈ N. We define the n-th iterate
of f , denoted fn, as

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

with the convention that f0 = IdE.

Examples

If

• f : R → R is the function defined by ∀x ∈ R, f(x) = x2,

• g : R → R is the function defined by ∀x ∈ R, g(x) = sin(x),

then g ◦ f and f ◦ g are functions from R to R, and for all x ∈ R, we have

(f ◦ g)(x) = (sin(x))2 and (g ◦ f)(x) = sin(x2).

Note: The notation g ◦ f reads “from right to left”: it denotes the function where f is
applied first, followed by g.

Composition with identity. Here is another more theoretical example. If f : E → F
is a function, then we have

idF ◦ f = f and f ◦ idE = f.
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5.1.3 Image and pre-Image

Image and pre-Image

Definition 27 (Image and pre-Image). For every element x ∈ E, f(x) is called the image
of x by f . The image of f is the set of images of the elements of E by f , that is

Im(f) = {y ∈ F such that ∃x ∈ E verifying f(x) = y}.

For every y ∈ Im(f), x is called a pre-image of y if f(x) = y. Note that, by the very
definition of a function, an element of E has a unique image. However, an element of
Im(f) can have multiple pre-images.

Example

Consider the function
f : R → R x 7→ x2.

• The element y = −1 of the co-domain R is not reached by f .

• The element y = 0 of R is reached by f : the number x = 0 is a pre-image of it, and
it is the only pre-image of y = 0 by f .

• The element y = 3 is also reached by f : it has exactly two pre-images by f , the
numbers x =

√
3 and x = −

√
3.

Casually Explained

Casually Explained: a function is not one-to-many This definition is the formal-
ization of the intuitive definition of a mapping, which is some relation which, for each
element in x in E, associates a single element in F , denoted f(x). In other terms, we say
that f cannot be one-to-many. The fact that a function is not one-to-many makes it differ
other mapping-like objects like conditional distributions p(y|x): for a given x, each time
one samples from p(·|x), one might end up with a different y.
Casually Explained: a function can be many-to-one! Even though f cannot be
one-to-many, nothing in its definition prevents it from being many-to-one: for a given
y ∈ F , there might be several x ∈ E such that f(x) = y.

5.1.4 Injectivity, Surjectivity, Bijectivity and Inversion of Maps

Injective Map

Let E and F be two sets, and let f be a map from E to F . We say that f is injective if:

∀x, y ∈ E, f(x) = f(y) =⇒ x = y
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A Visual Explanation

E Fx1

x2

x3

y1

y2

y3

y4

Here, f is given by the triplet

• E = {x1, x2, x3}

• F = {y1, y2, y3, y4}

• G ⊂ E × F = {(x1, y1), (x2, y2), (x3, y4)}

Surjective Map

Let E and F be two sets, and let f be a map from E to F . We say that f is surjective if:

∀y ∈ F, ∃x ∈ E, f(x) = y

A Visual Explanation

E Fx1

x2

x3

x4 y1

y2

Here, f is given by the triplet

• E = {x1, x2, x3, x4}

• F = {y1, y2}

• G ⊂ E × F = {(x1, y1), (x2, y2), (x3, y2), (x4, y1)}

Bijective Map

Let E and F be two sets, and let f be a map from E to F . We say that f is bijective if:

∀y ∈ F, ∃!x ∈ E, f(x) = y

A Visual Explanation

E Fx1

x2

x3

x4 y1

y2

y3

y4
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Proposition 20. Let E,F be two sets, and f be a map from E to F . Then f is bijective
if and only if f is injective and surjective.

Proof. Exercise.

Definition 28 (Inverse). Let E,F be two sets, and f be a bijection map from E to F .
Then we can construct a map, called the inverse of f which to each y ∈ F associates the
unique x ∈ E such that f(x) = y. By definition, we have that:

∀x ∈ E, f−1(f(x)) = x

A Visual Explanation

E Fx1

x2

x3

x4 y1

y2

y3

y4

Composing Bijections

Proposition 21. Let E,F and G be three sets, f be a bijection from E to F , and g be
a bijection from F to G. Then the composition g ◦ f is a bijection from E to G, and we
have:

(g ◦ f)−1 = f−1 ◦ g−1

Composing Bijections

Proof. Exercise.
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5.2 Exercise Sheet 6: Functions

Familiarizing Exercises

Exercise 37. In each case, determine whether the map is injective, surjective, bijective.

1. E = R2, F = R2, f(x, y) = (x3, y3)

2. E = R2, F = R2, f(x, y) = (x+ y, x− y)

3. E = R2, F = R3, f(x, y) = (x+ y, x− y, 0)

4. E = R3, F = R2, f(x, y, z) = (x+ y + z, x− y + z)

5. E = R2, F = R2, f(x, y) = (x+ y, x+ y)

Solution.

1. f is bijective.

2. f is bijective.

3. f is injective, but not surjective, and thus not bijective.

4. f is surjective, but not injective, and thus not bijective.

5. f is neither injective, nor surjective, and thus not bijective.

■

Direct Image

Exercise 38. 1. Let f : R → R be the function defined by: ∀x ∈ R, f(x) = x2.

(a) If A = [0, 2] and B = [1, 4], what are f(A), f(B), f(A ∩B), f(A ∪B), f(A) ∩
f(B), and f(A) ∪ f(B)?

(b) Find two sets A and B for which f(A ∩B) ̸= f(A) ∩ f(B).

2. Let g : R → R be an arbitrary function.

(a) Let A and B be two subsets of R. Show that g(A ∩B) ⊆ g(A) ∩ g(B).

(b) What can be generally said about the relationship between g(A∪B) and g(A)∪
g(B)?

3. Consider the function

f : [0, 1]× [0, 1] → R, (x, y) 7→ x+ y.

Determine the set f([0, 1]× [0, 1]).

Solution. 1. (a) f(A) = [0, 4], f(B) = [1, 16], f(A∩B) = f([1, 2]) = [1, 4], f(A∪B) =
f([0, 4]) = [0, 16], f(A) ∩ f(B) = [0, 4] ∩ [1, 16] = [1, 4], f(A) ∪ f(B) = [0, 4] ∪
[1, 16] = [0, 16]

(b) A = [0, 1], B = [−1, 0]
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2. (a) Take x ∈ g(A ∩ B). That means there is an element y ∈ A ∩ B such that
g(y) = x. But then y ∈ A, so g(y) ∈ g(A), and y ∈ B so g(y) ∈ g(B), hence
x = g(y) ∈ g(A) ∩ g(B). Hence g(A ∩B) ⊆ g(A) ∩ g(B).

(b) g(A∪B) = g(A)∪ g(B), since the places you can get to from either A or B are
exactly either g(A) or g(B).

3. [0, 2]
■

Inverse Image

Exercise 39. 1. Let f : R → R be the function defined by: ∀x ∈ R, f(x) = x2. If
A = [0, 4] and B = [−1, 1], what are f−1(A), f−1(B), f−1(A∩B), and f−1(A∪B)?

2. Let g : R → R be an arbitrary function. Let A and B be two subsets of R. Show that
g−1(A ∩B) = g−1(A) ∩ g−1(B) and g−1(A ∪B) = g−1(A) ∪ g−1(B).

Solution. 1. f−1(A) = [−2, 2], f−1(B) = [−1, 1], f−1(A ∩ B) = [−1, 1], f−1(A ∪ B) =
[−2, 2].

g−1(A ∩ B) = g−1(A) ∩ g−1(B). Let x ∈ g−1(A ∩ B). Then g(x) ∈ A ∩ B, so g(x) ∈ A
and g(x) ∈ B. Therefore, x ∈ g−1(A) ∩ g−1(B).
Conversely, if x ∈ g−1(A) ∩ g−1(B), then g(x) ∈ A and g(x) ∈ B, so g(x) ∈ A ∩B, hence
x ∈ g−1(A ∩B).

g−1(A ∩B) = g−1(A) ∩ g−1(B) .

g−1(A ∪ B) = g−1(A) ∪ g−1(B). Let x ∈ g−1(A ∪ B). Then g(x) ∈ A ∪ B, so either
g(x) ∈ A or g(x) ∈ B. Thus, x ∈ g−1(A) ∪ g−1(B).
Conversely, if x ∈ g−1(A) ∪ g−1(B), then g(x) ∈ A ∪B, so x ∈ g−1(A ∪B).

g−1(A ∪B) = g−1(A) ∪ g−1(B) .

■

Abstract Manipulations

Exercise 40. 1. Let E and F be two sets, and let f : E → F be a function. Let A be
a subset of E and B a subset of F . Show the following equality:

f(A ∩ f−1(B)) = f(A) ∩B.

2. Let E and F be two sets and let f : E → F . Show the following equality:

E =
⋃
y∈F

f−1(y).

Solution. 1. We prove the two inclusions separately. Inclusion ⊆: Let y ∈ f(A∩f−1(B)).
Then there exists x ∈ A ∩ f−1(B) such that f(x) = y. Since x ∈ A, we have y = f(x) ∈
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f(A), and since x ∈ f−1(B), we also have f(x) ∈ B. Hence:

y ∈ f(A) ∩B.

This inclusion holds for any function f , without needing injectivity or surjectivity. Con-
vince yourself that we could have f−1(B) = ∅ is f is not surjective but that the inclusion
would still be true.

Inclusion ⊇: Let y ∈ f(A) ∩B. Then:
- y ∈ f(A) ⇒ ∃x ∈ A such that f(x) = y,
- y ∈ B ⇒ x ∈ f−1(B), so x ∈ A ∩ f−1(B), and hence:

y = f(x) ∈ f(A ∩ f−1(B)).

2. Let x ∈ E. Then, y = f(x) ∈ F , and by definition: x ∈ f−1(y). Therefore, x ∈⋃
y∈F f−1(y), so:

E ⊆
⋃
y∈F

f−1(y).

Conversely, if x ∈
⋃

y∈F f−1(y), then there exists y ∈ F such that x ∈ f−1(y). This means
f(x) = y, so x ∈ E. ■

Characteristic Function of a Subset

Exercise 41. Let E be a set. For each subset A of E, define a function 1A : E → R by
the formula

∀x ∈ E, 1A(x) =

{
1 if x ∈ A,

0 if x /∈ A.

1. Let A be a subset of E. Show the following equality of functions: 1Ac = 1 − 1A.
Where the set Ac is all the elements of E that are not in A.

2. Let A and B be two sets.

(a) Show the following equality of functions: 1A∩B = 1A1B

(b) Show the equality 1A∪B = 1A + 1B − 1A1B.

3. Let A and B be two subsets of E. Find and prove a formula for 1A\B where the set
A \B is A with those elements that are also in B removed.

Solution. 1. Show that 1Ac = 1− 1A.
Let x ∈ E. We consider two cases:

• If x ∈ A, then 1A(x) = 1, and x /∈ Ac, so 1Ac(x) = 0. Hence:

1− 1A(x) = 1− 1 = 0 = 1Ac(x).

• If x /∈ A, then 1A(x) = 0, and x ∈ Ac, so 1Ac(x) = 1. Hence:

1− 1A(x) = 1− 0 = 1 = 1Ac(x).
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Therefore, the identity holds for all x ∈ E, so 1Ac = 1− 1A .

2(a). Show that 1A∩B = 1A · 1B.
Let x ∈ E. We consider the value of both sides:
- If x ∈ A ∩B, then x ∈ A and x ∈ B, so 1A(x) = 1, 1B(x) = 1, and:

1A(x) · 1B(x) = 1 · 1 = 1 = 1A∩B(x).

- If x /∈ A ∩B, then either x /∈ A or x /∈ B, so at least one of 1A(x), 1B(x) is 0, hence:

1A(x) · 1B(x) = 0 = 1A∩B(x).

Thus, 1A∩B = 1A · 1B .

2(b). Show that 1A∪B = 1A + 1B − 1A · 1B.
Let x ∈ E. There are four cases to consider:
- If x ∈ A ∩B: then 1A(x) = 1, 1B(x) = 1, so:

1A(x) + 1B(x)− 1A(x) · 1B(x) = 1 + 1− 1 = 1 = 1A∪B(x).

- If x ∈ A \B: then 1A(x) = 1, 1B(x) = 0, so:

1 + 0− 0 = 1 = 1A∪B(x).

- If x ∈ B \A: then 1A(x) = 0, 1B(x) = 1, so:

0 + 1− 0 = 1 = 1A∪B(x).

- If x /∈ A ∪B: then 1A(x) = 0, 1B(x) = 0, so:

0 + 0− 0 = 0 = 1A∪B(x).

Therefore, 1A∪B = 1A + 1B − 1A · 1B .

3. Find and prove a formula for 1A\B.
Note that:

A \B = A ∩Bc,

so by part (2a):
1A\B = 1A · 1Bc .

Now applying part (1), we have 1Bc = 1− 1B , so:

1A\B = 1A(1− 1B) = 1A − 1A · 1B .

Hence, the final identity is:
1A\B = 1A − 1A · 1B .

■
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Exercise 42. Show that if f : E → F is a bijection, then we have:

f(f−1(y)) = y, ∀y ∈ F

Solution. Since f is a bijection, it is in particular:

• Surjective: for every y ∈ F , there exists x ∈ E such that f(x) = y.

• Injective: for every x1, x2 ∈ E, if f(x1) = f(x2), then x1 = x2.

Let y ∈ F . Because f is surjective, there exists at least one x ∈ E such that f(x) = y.
Define f−1(y) := x. This makes sense because f is a bijection, so f−1 is well-defined and
assigns a unique pre-image to each y ∈ F .
Then,

f(f−1(y)) = f(x) = y,

as required.

Conclusion: For all y ∈ F , f(f−1(y)) = y, so:

f ◦ f−1 = idF .

■

Exercise 43. Prove the propositions from the lecture, that a function is bijective if and
only if it is injective and surjective, and that the composition of two bijections is a bijection.

Solution. TO DO ■
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5.3 Neuro Q2: Representational Geometry & Dot Products

You live in a bizarre dystopian future where aliens are studying your nervous system. In pursuit
of understanding they are only allowing you to see a sequence of four badly drawn smiley faces
(the aliens haven’t mastered drawing human forms).

Previous evidence (from fMRI studies with ENORMOUS magnets) has led the aliens to think
that two of your neurons encode the smiley faces, i.e. there is a function, g : F → R2, that
maps the set of four smiley faces, F , to the two neurons’ activities. They begin the process of
preparing you for surgery to examine how your two neurons do this. In your desperation you
quickly shout out “Don’t hurt me! I’m a theoretical neuroscientist! I already know what you’ll
find in these neurons - there’s no need to do the experiments!”
They pause, bemused, as their babel fish translators lather complex chemical patterns into their
taste based communication systems. “(Burnt chicken with grape overtones) (Metallic
tang of gory fangs) (Bamboo after rainfall)” they reply, which can be poorly translated
as “Though we doubt what you are excreting, tasting you does sound more pallatable than getting
your disgusting brain juices all over us again. Go on.”
You begin tentatively...

A reasonable model of these higher level visual neurons is that they are encoding information
about these faces in a way that allows other neurons to decode the information they need to.
For example, your system for emotional control must be able to extract whether the faces are
happy or sad, and your finely tuned nasal analysing cortex has to know if the faces have noses.
Let’s imagine that you model your emotional extraction process as a neuron somewhere in the
amygdala that swallows your visual neuron activity pattern, g(f) for a face f , making it a
function, h : R2 → R, defined by:

h(g(f)) = ϕ(wT g(f)))

For some weight vector, w ∈ R2, and a nonlinearity ϕ : R → R. This nonlinearity is very simple:

ϕ(y) =

{
1 if y ≥ 0

0 if y < 0

For the neuron to readout emotion from the population it must activate (h = 1) for the happy
faces and deactivate for the unhappy.

1. The encodings of the faces are points in 2D space, {g(f)}f∈F . A readout neuron splits
these inputs into two groups, those that it activates for, and those that it doesn’t. Choose
some w and draw and describe these two spaces, i.e. an h(g(f)).
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2. How must the representation be structured (i.e. what must g(f) be) to allow emotion to
be extracted using this neuron? Draw two representations, one that would work and one
that wouldn’t.

3. Now you have another readout neuron that is supposed to decode whether the face has a
nose or not. Draw a representation that permits both features to be readout at once.

The aliens are not satisfied, you have given them many options, but none of them match what
they know about neurons: neurons never have negative firing rates! They sharpen their knives.

“Wait!” You shout.

4. You quickly think about what would happen if the representations are only allowed to be
positive, (i.e. g : F → R2

+, where R2
+ is the positive quadrant of the plane) show that in

the simple model described above you can’t read out both features from a positive-only
representation.

5. You propose a quick change:

h = ϕ(wT g + b)

With a new bias parameter b ∈ R. Describe how this changes the classifications the readout
neuron is able to learn.

6. Show how this allows you, for some choices of representation, to readout both emotion and
nosed-ness from four positive representations at the same time.

7. Show that there are still representations from which emotion and nosedness cannot be
decoded.

8. Explain how the same effect as a bias could have been achieved if you were allowed a third
neuron to create your representation. How must that third neuron behave? (i.e. what is
its response pattern as a function of faces)

The aliens are still unimpressed with your wishey-washey-ness. When your model is questioned
you just add a new parameter, not the most enlightening behaviour. You need to impress them
- you start thinking harder.

You begin to wonder about two perenniel neural concerns, energy costs and noisiness.

9. Let’s say your neurons are noisy. Rather than always firing with rates g(f) they tend to
fire with a rate ReLU(g(f)+η) where ηi ∼ UNIFORM[−1, 1]σ (ReLU(x) = max(x, 0), just
to keep the neural activities positive). How should the structure of the representation be
changed so that the readout neurons will still be able to extract emotion and nosedness?
What is a sufficient condition on the representation such that noise will not effect the
emotional and nosedness outputs?

10. But, we would also like to save energy, which in this case we’ll take to mean the amount of
neuron firing, i.e. the cost of the representation is C(g) =

∑
f∈F ||g(f)||2. We could push

all the firing rates to zero which would then cost zero to represent, but then we wouldn’t
be able to readout what we need to, and they can’t be negative as we discussed earlier.
Given that we want to perfectly be able to readout emotion and nosedness despite noise,
what is the structure of the lowest energy representation?
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You should have ended with a very surprising thing: each of the neurons in the representation
should encode either emotion or nosedness! This is known as a disentangled representation,
different pieces of information are stored in different neurons, and in fact the above derivation can
be formalised and generalised to many neurons and many variables under suitable assumptions.
The aliens are impressed and slightly angry, why are they looking for readout neurons elsewhere
in the brain when the information is already perfectly represented here in these two neurons?!
They release you, asking for your help in the future, and go look for the authors of the original
paper that misled them, knives still drawn... These aliens take science quite seriously...

Solution. Hello
■
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Chapter 6

Linear Maps & Matrices

6.1 Linear Maps

Motivation

Now the full game begins! We turn to functions of vectors, but we focus on a specific type
of function that is of paramount importance: linear functions.
Let’s follow the natural idea that we can understand something if we can break it into its
parts, analyze the behavior of the parts, then recombine them to understand the whole.
For linear functions this procedure works nicely: the function applied to a sum of two
inputs is the sum of the function applied to each of the inputs. We can therefore study
how the function behaves on some set of atoms, and from this reconstruct the whole
behavior!

Definition 29 (Linear maps). Let n ∈ N∗. A mapping f : Rn 7−→ Rm is called linear if
the following holds:

• f(x+ y) = f(x) + f(y), for all x, y ∈ Rn;

• f(λx) = λf(x), for all x ∈ Rn, λ ∈ R.

1D Intuition

Let’s think about the simplest linear function f : R → R. In order to be linear:

f(λa) = λf(a) ∀λ, a ∈ R

Using λ = 0 we can see that f(0) = 0. Further, as soon as you know f(a) for one number
a, the equation above lets you find all others by multiplying by the right λ. Plotting

(x, f(x)) we see that this is a straight line through the origin with gradient f(a)
a :

75
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Definition 30 (Endomorphisms). Let n ∈ N∗. A linear map T from Rn to itself is called
an endomorphism. The space of all endomorphisms is denoted L(Rn).

Definition 31 (Isomorphisms). Let f ∈ L(Rn). If f is a bijection, then f is called an
isomorphism.

Proposition 22. If f is an isomorphism, then f−1 is an isomorphism.

Proof. Let a, b ∈ Rn and λ ∈ R, then if there exist y, z ∈ Rn such that f(x) = a and
f(y) = b. We then have f(x) + λf(y) = f(x + λy), that is to say, applying f−1 on both
sides, f−1(a+ λb) = x+ λy = f−1(a) + λf−1(b).

So, when it exists, the inverse of a linear function is also a linear function!

2D Intuition

Let’s think about a more complex linear function, f : R2 → R2, f(x). Motivated by
linearity we might try decomposing the function’s behavior; a natural choice would be
to decompose the vector in a basis (for example the canonical basis): x = x1e1 + x2e2,
x1, x2 ∈ R, e1, e2 ∈ R2. Then:

f(x) = f(x1e1 + x2e2) = x1f(e1) + x2f(e2)

Here f(e1) and f(e2) are two vectors in the output space. To understand this, consider
input points with x2 = 0: the x-axis in the input space. These are mapped to x1f(e1),
i.e. another line in the output space, but pointing in the f(e1) direction! Similarly, the
y-axis is mapped to the line f(e2).



6.2. MATRICES & LINEAR MAPS 77

Now what if both x1 and x2 are nonzero? Consider all the points with x1 = 1, a vertical
line in the input space. This gets mapped to f(e1) + x2f(e2), i.e. another line in the
output space, offset from the origin by f(e1), pointing along f(e2). Now we can generalize
this. Any gridline we draw in the input space (i.e. a set of points with either constant x1

or x2) get’s mapped to a new line in the output space, shifted by some amount of either
f(e1) or f(e2), and pointing along the other vector.

This logic generalises beyond 2D; indeed, you can always think of a linear map as mapping
grid lines in the input space to grid lines in the output space, from the decomposition:

f : Rn → Rm f(x) = f(

n∑
i=1

xiei) =

n∑
i=1

xif(ei)

6.2 Matrices & Linear Maps

We now build a link between linear functions and matrices.

Matrix-Vector product is a Linear Function

Proposition 23. The function f : Rn → Rm, n,m ∈ N∗, f(x) = Mx for matrix M ∈
Rm×n is linear.
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Proof. Recall the definition of matrix-vector product:

(Mx)i =
∑
j

Mijxj (6.1)

We can see that this is a linear function:

(M(x+ λy))i =
∑
j

Mij(xj + λyj) =
∑
j

Mijxj + λ
∑
j

Mijyj = (Mx)i + λ(My)i (6.2)

Hence, f(x+ λy) = f(x) + λf(y).

Column-View of Matrix-Vector Product

We saw that matrix-vector product is a linear function. We now link it to our ‘grid-lines
to grid-lines’ view of linear functions. We do this using the column vectors of M ∈ Rm×n,
ci ∈ Rm:

M =

 | | ... |
c1 c2 ... cn
| | ... |

 Mx =

 | | ... |
c1 c2 ... cn
| | ... |



x1

x2

...
xn

 =

n∑
i=1

xici

In other words, matrix-vector product is just a linear combination of the columns of the
matrix M , and the weightings are given by the elements of x!!!
Further, we can make one more link. We saw that a linear function can be decomposed
according to the canonical basis:

f(x) =

n∑
i=1

xif(ei)

Let’s choose to express these vectors f(ei) in the canonical basis, [f(ei)]B = ci. Then we
can see that matrix-vector product performs exactly the same operation as f when we
express the inputs and outputs in the canonical basis! The axes of the new grid lines align
with the columns of the matrix, M . This means we can instantly draw the behavior of
the matrix-vector product in the same way we drew the behavior of linear functions.

This view shows us the link going the other way:

Linear Map can be enacted by Matrix-vector Product

Proposition 24. For every linear function f : Rn → Rm, n,m ∈ N∗, we can create the
matrix M ∈ Rm×n defined as:

M =

 | | ... |
[f(e1)]B [f(e2)]B ... [f(en)]B

| | ... |


where {ei}ni=1 is the canonical basis, B. Then [f(x)]B = M [x]B.
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Given a linear map the associated matrix is Basis Dependent!!!

Remark 1. Important point: A linear map takes vectors in the input space and maps
them to vectors in the output space. These quantities are independent of basis, and so
a linear map is defined independently of a basis. However, as shown above, a matrix
corresponds to a particular choice of basis. If we change the basis in either the input or
output space we change the matrix. We will return to this point. For now we’ll assume
we are using the canonical basis.

Having established this link, life becomes simpler. Many things become easier to show using linear
maps than using matrices. We shall see this repeatedly in the following sections. The elegant
proofs presented are much more laborious in matrix-vector notation, though they express the
same ideas.

6.3 Image, Kernel, & Rank

We saw that the output of Mx was a linear combination of the columns of M . Different
choices of x lead to different linear combinations of the columns. It seems useful to think
of the notion of column space, the span of the columns of the matrix. Mx is in the column
space for all x, and at least one x reaches every point in the column space.

We will now formalize these notions in powerful ways.

Definition 32 (Image of a set). Let E and F be two sets and f a function between them,
and let H ⊂ E. Then the set:

{f(x) : x ∈ H}

is called the image of H by f , and is denoted by f(H).

Definition 33 (Preimage of a set). Let E and F be two sets, and let G ⊂ F . Then the
set:

{x : f(x) ∈ G}

is called the pre-image of G by f , and is denoted by f−1(G).
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Proposition 25 (The image of a subspace is a subspace). Let n,m ∈ N∗, and H be a
subspace of Rn. Let f be a linear map from Rn to Rm. Then f(H) is a subspace of Rm.

Proof. Let u, v ∈ f(H), λ ∈ R. By definition of f(H), there exist x, y ∈ H such that
f(x) = u and f(y) = v. Since H is a subspace of Rn, x+ λy ∈ H. Using the linearity of
f , we have f(x+ λy) = f(x) + λf(y) = u+ λv. Therefore, u+ λv ∈ f(H). Thus, f(H) is
a subspace of Rm.

Proposition 26 (The preimage of a subspace is a subspace). Let n,m ∈ N∗, and let G
be a subspace of Rm. Then f−1(G) is a subspace of Rn.

Proof. We have f−1(G) = {x ∈ Rn | f(x) ∈ G}. Let x, y ∈ f−1(G) then f(x + λy) =
f(x) + λf(y) ∈ G because G is a subspace, and thus x+ λy ∈ f−1(G).

Definition 34 (Image of a linear map). Let n,m ∈ N∗, and let f be a linear map from
Rn to Rm. Then we call f(Rn) the image of f , and denote it Im(f).

Spanning set of Im(f)

Proposition 27. Let n,m ∈ N∗, and B = {e1, . . . , en} be a basis for Rn. Then we have
that:

span {f(e1), . . . , f(en)} = Im(f)

In other terms, {f(e1), . . . , f(en)} is a spanning set for Im(f).

Rank of a linear map

Definition 35 (Rank). Let f be a linear function, f : Rn → Rm. The rank of f is the
integer defined as the dimension of its image:

rank(f) := dim(Im(f))

Definition 36 (Kernel of a linear map). Let n,m ∈ N∗, and let f be a linear map from
Rn to Rm. Then we call f−1({0}) the kernel of f , and denote it ker(f).

Why do we care about characterizing kernels

A large amount of problems in mathematics can be framed as problems of the form:

find x : f(x) = y

The elements of the kernel are those we can add to the input without changing the output:

f(x) = y xk ∈ ker(f) f(x+ xk) = f(x) + f(xk) = f(x) = y

So, given the constraint f(x) = y, we can only find x up to degeneracy given by the ker(f).
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Columnspace & Nullspace

Given our link between linear maps and the corresponding matrix applied to a vector in
the canonical basis, there are more matrix-centric versions of the image and kernel. As
discussed before, the image of f(x) = Mx is the span of the columns of f , while the kernel
is often called the nullspace. Some examples are visualized below.

We define this formally below.

Kernel & Image of Matrix

Definition 37. Given a matrix A ∈ Rn×m, we define its kernel (nullspace) and image
(column space) as:

1. ker(A) = {x ∈ Rn|Ax = 0}

2. im(A) = {y ∈ Rm|∃x ∈ Rns.t.Ax = y}

6.4 Invertibility & Rank-Nullity Theorem

Given the discussion above, the following facts should not be surprising.
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Proposition 28. Let n,m ∈ N∗, f : Rn 7−→ Rm be a linear map, and {e1, . . . , en} be a
basis for Rn. Then we have:

1. f is injective if and only if ker(f) = {0}.

2. f is injective if and only if {f(e1), . . . f(en)} is linearly independent

3. f is surjective if and only if {f(e1), . . . , f(en)} is a spanning set for Rm.

4. f is bijective if and only if {f(e1), . . . , f(en)} is a basis for Rm.

Proof. 1. f is injective if and only if ker(f) = {0}: (⇒) If f is injective, then
f(x) = 0 = f(0) implies x = 0. Thus, the only element mapped to 0 is 0 itself, so
ker(f) = {0}.
(⇐) If ker(f) = {0}, suppose f(x) = f(y). Then f(x − y) = f(x) − f(y) = 0, so
x− y ∈ ker(f). Hence, x− y = 0, i.e., x = y, and f is injective.

2. f is injective if and only if {f(e1), . . . , f(en)} is linearly independent:

Since {e1, . . . , en} is a basis for Rn, any vector x ∈ Rn can be uniquely written as a
linear combination x =

∑n
i=1 λiei. By linearity,

f(x) =

n∑
i=1

λif(ei).

So the image of x is a linear combination of the vectors f(ei). Now:

(⇒) Suppose f is injective. Consider a linear combination
∑n

i=1 λif(ei) = 0. Then

f

(
n∑

i=1

λiei

)
= 0,

so the vector x :=
∑n

i=1 λiei lies in the kernel of f . Since f is injective, ker(f) = {0},
hence x = 0, which implies that all λi = 0. Thus, the family {f(e1), . . . , f(en)} is
linearly independent.

(⇐) Conversely, suppose that {f(e1), . . . , f(en)} is linearly independent. Suppose
f(x) = 0 for some x ∈ Rn. Write x =

∑n
i=1 λiei. Then

0 = f(x) =

n∑
i=1

λif(ei),

so a linear combination of f(ei) gives zero. Since they are linearly independent, it
must be that all λi = 0, so x = 0, and therefore ker(f) = {0}. By part (1), this
implies f is injective.

3. f is surjective if and only if {f(e1), . . . , f(en)} spans Rm:

Every x ∈ Rn can be written as x =
∑n

i=1 λiei, and then

f(x) =

n∑
i=1

λif(ei).
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Thus, the image of f is the span of {f(e1), . . . , f(en)}:

Im(f) = span(f(e1), . . . , f(en)).

Therefore, f is surjective (i.e., Im(f) = Rm) if and only if this family spans Rm.

4. f is bijective if and only if {f(e1), . . . , f(en)} is a basis of Rm:

f is bijective if and only if it is both injective and surjective. By parts (2) and (3),
this holds if and only if {f(e1), . . . , f(en)} is both linearly independent and spanning
in Rm, which means it is a basis for Rm.

Proposition 29 (Rank-nullity theorem for isomorphisms). Let Rn and Rm be two vector
spaces and f : Rn 7−→ Rm be an isomorphism. Then n = m.

Proof. Let B = {e1, . . . , en} be a basis for Rn by definition of the dimension. By Propo-
sition 28, f is bijective meaning that {f(e1), . . . , f(en)} is a basis for Rm. By definition
of the dimension, n = dim(Rn) = dim(Rm) = m.

Rank–Nullity Theorem

Below, we will prove perhaps the most important theorem of linear algebra, the rank-nullity
theorem. It links the (dimension of the) image and the kernel of a linear map.

Theorem 3 (Rank-Nullity Theorem). Let n,m ∈ N∗, and f : Rn 7−→ Rm a linear map.
Then we have:

rank(f) + dim(ker(f)) = n

Using the machinery that we have developed so far, proving this beautiful identity is actually
surprisingly simple! To do so, we first show the following intermediary result

Proposition 30. Let n,m ∈ N∗, and f : Rn 7−→ Rm be a linear map. Let H be a
complementary subspace of ker(f) in Rn. Define g as

g :

{
H 7−→ Im(f)

x 7−→ f(x)

Then g is an isomorphism.

Proof. To prove this result, it suffices to make sure that g verifies the definition of an
isomorphism, e.g., it is a surjection and an injection.

• g is surjective. Let y ∈ Im(f), then there exists some x ∈ Rn such that y = f(x).
Moreover, sinceH is a complementary subspace of ker(f) in Rn, there exists a unique
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pair xH ∈ H, xk ∈ ker(f) such that x = xH + xk. Then we have:

f(xH) = f(xH) + 0 = f(xH) + f(xk) = f(xH + xk) = f(x) = y

Thus, we have found some xH in H such that f(xH) = y, and g is surjective.

• g is injective. Let x1, x2 ∈ H such that f(x1) = f(x2), then we have that f(x1−x2) =
0, and thus x1 − x2 ∈ ker(f). Because x1 and x2 belong (by definition) to H,
x1 − x2 ∈ H, and x1 − x2 ∈ H ∩ ker(f), thus, x1 − x2 = 0, as H and ker(f) are
complementary.

Proof of Theorem 3. Since g is an isomorphism from H to Im(f), we have that
dim(Im(f)) = dim(H). Because H⊕ker(f) = Rn, we have that dimH = n−dim(ker(E))
(from our results on complementary vector spaces). Combining these two equalities, we
obtain the desired result!

From this theorem, we derive this very nice corollary:

Corollary 2. Let n ∈ N∗, and let f ∈ L(Rn). Then we have:

f injective ⇐⇒ fsurjective ⇐⇒ fbijective

Invertibility of a Matrix

Using our link between linear maps and a matrix acting on a vector in the canonical basis, all
these statements about bijectivity also apply similarly to matrices.
Have a think about which of the matrices below are invertible and why
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Invertibility of Matrices

Proposition 31. A matrix, M ∈ Rn×m is a linear map f : Rn → Rm, f : x → Mx.
Therefore, it is invertible if and only if:

1. n = m, i.e. the matrix is square

2. rank(M) = n, i.e. the matrix is ‘full-rank’

6.5 Changing Basis & Similar Matrices

Basis Dependence of Matrices

We saw before that the matrix representation of a linear map depends on the basis you
choose:

Now we will make this dependence explicit, and consider the matrix representation of a
linear map in an arbitrary basis, rather than the canonical one.

Definition 38 (Matrix representation of a linear map). Let n,m ∈ N∗. Let B :=
{e1, . . . , en} (resp. B′ := {f1, . . . , fm}), be a basis for Rn (resp. for Rm). Let T be a
linear map from Rn to Rm. Then the matrix of T in the bases B,B′, denoted MatB,B′(T )
is defined as:

MatB
′

B (T )ij :=
[
[T (e1)]B′ . . . [T (en)]B′

]
When n = m and B = B′, we will denote MB

B (T ) = MB(T ) to simplify the notation.

Proposition 32. Let n,m ∈ N∗, and let T be a linear map from Rn to Rm. Let B,B′ be
bases of Rn,Rm respectively. Let x ∈ Rn. Then we have: Then we have, for all x ∈ Rn

[T (x)]B′ = MatB
′

B (T )[x]B
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Proof. let B = {e1, . . . , en} and B′ = {f1, . . . , fm} be bases of Rn and Rm respectively.
Let x ∈ Rn. Then we have:

T (x) = T

(
n∑

i=1

([x]B)iei

)

=

n∑
i=1

([x]B)iT (ei)

=

n∑
i=1

([x]B)i

m∑
j=1

([T (ei)]B′)jfj

=

m∑
j=1

(
n∑

i=1

([T (ei)]B′)j([x]B)i

)
fj =

m∑
j=1

(MatB
′

B (T )[x]B)jfj

By definition of coordinates, we thus have [T (x)]B′ = MatB
′

B (T )[x]B .

Impact of the basis on the matrix (visually explained)

Let T ∈ L(R2) represented in the canonical basis by the matrix[
2 −1
0 1

]
Then, show that

MatB(T ) =

[
2 0
0 1

]
for B = {(1, 1), (1, 0)}.
Thus, while T seems to operate on the vectors x in a complex manner when using the
canonical basis, T simply scales the coordinates of x in the basis B by 2 and 1 respectively!
The simplicity of T ’s action in the basis B is well captured visually by its actions on isolines
in different basis:

Figure 6.1: Isolines of R2 for the canonical
basis {(1, 0), (0, 1)}

Figure 6.2: Action of T on the canonical ba-
sis isolines: T sheafes the isolines in a com-
plex manner

Figure 6.3: Isolines of R2 for the basis
{(1, 1), (0, 1)}

Figure 6.4: Action of T on the isolines of B:
T only dilates the first isolines by a factor of
2, and leaves the second isolines unchanged
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Operations on Map Representations

Furthering the analogy between linear maps and matrices, the following statement holds:

Proposition 33 (Composition as matrix multiplication). Let n,m, p > 0, consider
B,B′, B′′, bases of Rn, Rm, and Rp respectively. Let T : Rn 7−→ Rm and U : Rm 7−→ Rp

be two linear maps. Then we have that

MatB
′′

B (U ◦ T ) = MatB
′′

B′ (U)MatB
′

B (T )

Proof. Let B = {e1, . . . , en}, B′ = {f1, . . . , fm}, and B′′ = {g1, . . . , gp}. Then by defini-
tion of matrix representations, we have that

U ◦ T (ei) = U

 m∑
j=1

MatB
′

B (T )jifj


=

m∑
j=1

MatB
′

B (T )jiU(fj)

=

m∑
j=1

MatB
′

B (T )ji

p∑
k=1

MatB
′′

B′ (U)kjgk

=

p∑
k=1

 m∑
j=1

MatB
′

B (T )jiMatB
′′

B′ (U)kj

 gk

=

p∑
k=1

(MatB
′′

B′ (U)MatB
′

B (T ))ki)gk

Proposition 34 (Representation of change of basis matrices). Let n > 0 be a finite-
dimensional vector space, and

id : Rn −→ Rn

x 7−→ id(x) = x

Let B, B′ be two bases of Rn. Then we have:

PB′

B = MatB
′

B (id)

Change of Basis Rule, Equivalent Matrices, Similar Matrices

The set of tools developed in the previous section allows us to easily prove the following formula
that relates the representations of a linear map T for two different choice of pairs of input-output
bases:
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Proposition 35 (Change of basis formula). Let n,m ≥ 0. Let Bn, B
′
n (resp. Bm, B′

m)
be two bases for Rn (resp. Rm), and let T : Rn 7−→ Rm be a linear map from Rn to Rm.
Then we have that:

Mat(T )
B′

m

B′
n
= PBm

B′
m
Mat(T )Bm

Bn
P
B′

n

Bn

Proof. First note that by the representation of change of bases given by Proposition 34,
the proposition is equivalent to:

Mat(T )
B′

m

B′
n
= Mat(idRm)

B′
m

Bm
Mat(T )Bm

Bn
Mat(idRn)Bn

B′
n
.

We have that
T = idRm ◦ T ◦ idRn .

By representing

• idRn using B′
n as the input basis and Bn as the output basis

• T using Bn as the input basis and Bm as the output basis

• idRm using Bm as the input basis and B′
m as the output basis

from the chain rule for matrix representations given by Proposition 15, we have that:

Mat(T )
B′

m

B′
n
= Mat(idRm)

B′
m

Bm
Mat(T )Bm

Bn
Mat(idRn)Bn

B′
n
,

proving the desired result.

Equivalent Matrices

Definition 39. Two matrices M,N ∈ Rn×m are said to be equivalent if there exist two
invertible matrices A ∈ Rm×m and B ∈ Rn×n such that

N = BMA.

Similar Matrices

Definition 40. Two matrices M,N ∈ Mn(R) are said to be similar if there exists an
invertible matrix P ∈ Rn×n such that

N = P−1MP.

If two matrices are similar, then they represent the same endomorphism in different bases.
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6.6 Exercise Sheet 7: Maps and Matrices

6.6.1 Linear Functions

Exercise 44. Let n,m ∈ N∗. Show that a map f : Rn 7−→ Rm is linear if and only if

f(x+ λy) = f(x) + λf(y), ∀x, y ∈ Rn, λ ∈ R.

Solution. It is easy to show that if f is linear this statement holds: by the first property
f(x+ λy) = f(x) + f(λy), and by the second f(x) + f(λy) = f(x) + λf(y).
Let’s then do the other direction, showing that if this statement holds, f is linear. Put
in λ = 1 and we get f(x+ y) = f(x) + f(y), i.e. the first linear property. Then choosing
x = 0 we get f(λy) = λf(y), i.e. the second linear property. Hence, f is linear. ■

Exercise 45. Which of these functions are linear?

1. f : R → R, f(x) = 2x

2. f : R → R, f(x) = x2

3. f : R2 → R, f(x) = x1 + x2, where x =

[
x1

x2

]

4. f : R2 → R, f(x) = x1x2, where x =

[
x1

x2

]
Solution. TO DO ■

Exercise 46. Farmer Aethelred’s runs three shops selling apples, ‘Farmer Aethelred’s
sublinear, linear and supralinear apples’TM. In each shop the price of your basket of x
apples is determined via the price function, price(x) with the following properties:

• Sublinear: price(λx) < λprice(x)

• Linear: price(λx) = λprice(x)

• Supralinear: price(λx) > λprice(x)

1. If I want to buy three apples what is the best tactic for buying from each shop to
minimize their price?

2. After King Wigmore’s decision to use apples as currency, Farmer Aethelred decides
to act as an exchange, and will now buy apples at the same price as they sell them
(It’s early days, and this currency exchange has not worked out how to charge a
fee). How should you buy from one shop and sell to another to make guaranteed
profit??? Describe a tactic for buying and selling from the same shop that also
generates guaranteed profit.

Solution. TO DO ■
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6.6.2 Kernel & Image

Exercise 47. Show that the kernel of a linear map, ker(f), is a subspace.

Solution. TO DO ■

Exercise 48. Describe the images and kernels of the following linear maps:

1. (x, y) → (x, 0)

2. (x, y) → (x+ y, x+ y)

3. (x, y) → (x+ y, x− y)

4. (x, y) → (0, 0)

Solution. TO DO ■

Exercise 49. Given A ∈ Rn×m show that the following 3 matrices all have the same rank:

[
A
] [

A
A

] [
A A
A A

]
(6.3)

Solution. TO DO ■

Exercise 50. I tell you that A ∈ Rn×m is rank r, and that the equation Ax = b has no
solutions for some choices of b (i.e. for some b there are no x that verify Ax = b). What
inequalities must be true relating n,m, r.

Solution. TO DO ■

Exercise 51. Show that the rank, kernel, and image, of A and −A are the same.

Solution. TO DO ■

Exercise 52. Suppose A = uvT + wzT for vectors u,w ∈ Rn, v, z ∈ Rm. Which vectors
span the column space of A, what about the column space of AT . When is the rank less
than 2?

Solution. TO DO ■

Exercise 53. If you were given a, b, c ∈ R all non-zero, how would you choose d such that
the following matrix is rank 1: [

a b
c d

]
Solution. TO DO ■
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Exercise 54 (Harder: Row Space Theorem). For a matrix A ∈ Rn×m,

1. Show that Ker(AT ) = Im(A)⊥

2. Similarly show that Im(AT ) = Ker(A)⊥

3. Use these results and the rank-nullity theorem to show that rank(A) = rank(AT )

4. Given two matrices A and B we construct C = AB. Using these results, show that
the rank of C is at most min(rank(A), rank(B))

Solution. TO DO ■

6.6.3 Invertibility & Rank-Nullity

Exercise 55. Let A,B ∈ L(Rn).

1. Show that Ax = Bx for all x ∈ Rn implies A = B.

2. Use this (or anything else) to show that the inverse is unique.

Solution. TO DO ■

Exercise 56. Given A,B ∈ L(Rn) you would need to show both AB = I and BA = I to
show A = A−1. Show that AB = In =⇒ BA = In, therefore you only need to check one
condition.

Solution. Step 1: A is surjective.
From AB = In, we know that for any x ∈ Rn,

ABx = x.

Setting y = Bx, we have Ay = x, so A maps some vector y ∈ Rn to every x ∈ Rn. Thus,
A is surjective.

Step 2: Surjectivity implies bijectivity.
Since A ∈ L(Rn) by the rank-nullity theorem, it is also injective. Hence, A is bijective,
and thus invertible.

Step 3: Conclude BA = I.
Because A is invertible, we can multiply both sides of AB = I on the left by A−1, yielding:

B = A−1 ⇒ BA = In.

Conclusion: If AB = In, then BA = In. Therefore, to show that A and B are inverses
of each other, it is sufficient to check just one of the identities.

■

Exercise 57. Show that we always have Ker(B) ⊆ Ker(AB) for two matrices A and B.

Solution. TO DO ■
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Exercise 58. We will show the following property step by step: Let A ∈ Mn,n(R) and
B ∈ Mn,p(R), if A is invertible, then rank(AB) = rank(B).

1. Show that if A is invertible then Ker(AB) ⊆ Ker(B);

2. Conclude using the previous exercise that if A is invertible then Ker(AB) = Ker(B);

3. Conclude that if A is invertible then rank(AB) = rank(B). Hint: use the rank-nullity
theorem.

Solution. TO DO ■

Exercise 59. Let A ∈ Rn×m and B ∈ Rm×n such that AB = In.

1. Show that we necessarily have n ≤ m. Hint: show that rank(AB) ≤ rank(B), then
show that rank(B) ≤ min{n,m} using Lemma ??, conclude;

2. Find an example of such matrices;

3. Show that if n ̸= p, we can never have BA = Ip.

Solution. TO DO ■

Sherman-Morrison Formula

Exercise 60. We’re going to derive a handy result. First, consider this weird matrix
A ∈ RN×N , A = α11T + I, where I is the identity matrix and 1 is a vector of ones.

1. This is actually not such a crazy matrix. Imagine you had a vector x, and wanted
to remove the mean of the elements from each element. This gives a vector with ele-
ments x̄i = xi− 1

N

∑
i xi. Convince yourself that performing this operation in matrix

notation can be written as x̄ = Ax for some value of α, and find the appropriate
value of α.

2. Now demeaning is actually not invertible (many datasets that differ only by the mean
are mapped to the same place!) But in this question we’re going to be interested in
inverses, which for this matrix will be matrices that add some kind of constant.
Surely this can be expressed in the same form: A−1 = γ11T + δI, i.e. just add a
constant. Show this guess is correct for A = α11T + I and derive expressions for γ
and δ in terms of α.

3. We’re going to consider a slight generalization to this, now A = I + uvT , you could
think of this as doing some kind of weighted demeaning operation using weights v,
but only along with a different weighting on the output, u (I’m not sure that’s the
best interpretation). Anyway, guess a form for it’s inverse in the style above and
find it.

4. Now consider another generalization, A = B+uvT , where B is an invertible matrix.
Use your answer to the previous question to derive its inverse in terms of B.

This is a useful expression, known as the Sherman-Morrison formula! Computing inverses
can be very slow, especially if the matrices are very big. Let’s pretend you invested all that
effort and calculated B−1, then it the matrix gets updated, but only by a small update uvT .
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This equation gives you a way to find the inverse of A using simple matrix multiplications
and scaling, without having to do a full inverse calculation, nice!

Solution. TO DO ■

6.6.4 Change of Basis

Familiarisation Exercise

Exercise 61. Compute MatB
′

B (T ) for the following cases:

• Case 1: E = F = R2, and let T : R2 7−→ R2 such that T ([1, 0]) = [1, 2] and
T ([0, 1]) = [2, 1], and

– Case 1.1: B = {[1, 0], [0, 1]}, and B′ = {[1, 0], [0, 1]}
– Case 1.2: B = {[1, 0], [0, 1]}, and B′ = {[1, 2], [2, 1]}

• Case 2: E = R3, F = R2, and T : R3 7−→ R2 such that T ([1, 0, 0]) = [1, 2],
T ([0, 1, 0]) = [2, 1], and T ([0, 0, 1]) = [1, 1].

– Case 2.1: B = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, and B′ = {[1, 0], [0, 1]}
– Case 2.2: B = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, and B′ = {[1, 2], [2, 1]}

Solution. TO DO ■

6.6.5 Three Difficult Exercises

Exercise 62. Consider u ∈ L(Rn). For some x ∈ Rn, we note u0(x) = x, and uk+1(x) =
u(uk(x)). We say that u is cyclic if there exists some x0 ∈ E such that

span
{
uk(x0); k ∈ N

}
= Rn

Show that there exists a basis B of Rn such that:

MatBE
(u) =


0 0 . . . 0 a1
1 0 . . . 0 a2
0 1 . . . 0 a3
...

...
. . .

...
...

0 0 . . . 1 an


for some a1, . . . , an ∈ R. Such a matrix is called a companion matrix.

Solution. Since u is cyclic, we know that

span
{
uk(x0) | k ∈ N

}
= Rn.

Define the subspace
W := span{x0, u(x0), . . . , u

n−1(x0)}.

Since W ⊆ Rn, to prove that W = Rn, it suffices to show that dim(W ) = n.
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Let m be the smallest non-negative integer such that the set {x0, u(x0), . . . , u
m(x0)} is

linearly dependent. Such an m must exist because if all uk(x0) were linearly indepen-
dent, we would obtain an infinite linearly independent set in Rn, contradicting the finite
dimension of the space.
So there exist scalars c0, . . . , cm, not all zero, such that:

c0x0 + c1u(x0) + · · ·+ cmum(x0) = 0.

Since m is the smallest such integer, the vectors {x0, u(x0), . . . , u
m−1(x0)} are linearly

independent. Moreover, since cm ̸= 0, we can write:

um(x0) = − 1

cm
(c0x0 + c1u(x0) + · · ·+ cm−1u

m−1(x0)).

Now apply u to both sides:

um+1(x0) = u (um(x0)) = − 1

cm
(c0u(x0) + c1u

2(x0) + · · ·+ cm−1u
m(x0)).

So um+1(x0) ∈ span{x0, . . . , u
m(x0)}. By induction, this implies:

∀k ≥ m, uk(x0) ∈ span{x0, . . . , u
m−1(x0)}.

Therefore,
span{uk(x0) | k ∈ N} = span{x0, . . . , u

m−1(x0)}.

But this span equals Rn, so:

Rn = span{x0, u(x0), . . . , u
m−1(x0)}.

Since these vectors are linearly independent and span Rn, they form a basis. Hence,
m = n.

In this basis B = {x0, x1, . . . , xn−1} with xk := uk(x0), we compute how u acts:

u(x0) = x1, u(x1) = x2, . . . , u(xn−2) = xn−1.

And since xn = u(xn−1) ∈ span{x0, . . . , xn−1}, write:

xn = a1x0 + a2x1 + · · ·+ anxn−1.

Therefore, in basis B, the matrix of u is:

MatB(u) =


0 0 . . . 0 a1
1 0 . . . 0 a2
0 1 . . . 0 a3
...

...
. . .

...
...

0 0 . . . 1 an

 ,

■

Exercise 63. By showing that for the correct choice of B and A in Definition 39 all ma-
trices can be transformed into a diagonal matrix with only zeros and ones on the diagonal,
show that all matrices of the same rank are equivalent.
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Solution. TO DO ■

Exercise 64. f ∈ L(R3) and f ◦ f = f2 = 0 (where 0 means the function that maps
everything to zero), while f ̸= 0. Show that the rank of f is 1. Write a matrix that
represents such an f .

Solution. Step 1: Consequence of f2 = 0
The condition f2 = 0 means:

∀x ∈ R3, f(f(x)) = 0.

That is, the image of f is contained in the kernel of f :

Im(f) ⊆ ker(f).

Step 2: Apply the Rank–Nullity Theorem
We know that:

3 = dim(R3) = rank(f) + dim(ker(f)).

Also from Step 1:
rank(f) = dim(Im(f)) ≤ dim(ker(f)).

Let r = rank(f), so:

3 = r + dim(ker(f)) ≥ r + r = 2r ⇒ 2r ≤ 3 ⇒ r ≤ 1.5.

Since the rank is an integer, we conclude r ≤ 1.

Step 3: Use f ̸= 0
We are told that f ̸= 0, so its rank cannot be 0. Hence:

rank(f) = 1.

Step 4: Structure of rank 1 linear maps
We now prove that any linear map f : R3 → R3 of rank 1 must be of the form f = vu⊤

for some nonzero vectors u, v ∈ R3.
Since rank(f) = 1, the image of f is a one-dimensional subspace of R3, i.e., Im(f) =
span(v) for some nonzero vector v ∈ R3.
Hence, there exists a linear form ϕ : R3 → R such that:

f(x) = ϕ(x) · v.

As ϕ is linear,
ϕ(x) = u⊤x,

for some u ∈ R3 (convince yourself). Therefore:

f(x) = (u⊤x)v = vu⊤x = (vu⊤)(x).

That is, f = vu⊤.



96 CHAPTER 6. LINEAR MAPS & MATRICES

Conclusion: Any rank 1 linear map f ∈ L(R3) can be written as:

f = vu⊤ for some u, v ∈ R3 \ {0} .

Step 4: Use the condition f2 = 0
We compute:

f2 = (vu⊤)(vu⊤) = v(u⊤v)u⊤.

So:
f2 = 0 ⇔ u⊤v = 0.

That is, the vectors u and v must be orthogonal.

Conclusion:
All such linear maps f with f ̸= 0 and f2 = 0 must be of the form:

f = vu⊤ with v, u ∈ R3 \ {0}, and u⊤v = 0.

■
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6.7 Neuro Q3: Nullspace and Motor Cortex

The motor cortex, especially in primates, appears to be involved in directly controlling your
body, especially dexterous voluntary movements (On the other hand, in mice its hard to spot
the difference between control mice and those who’ve had their motor cortex removed... leading
people to suppose cortex is mainly there in mice to keep the basal ganglia warm). Classic models
of motor cortex describe the neural activity and its effect on muscles as a linear dynamical
system. This just means that both the neural activity at timepoint t+ 1 and the signal sent to
the muscles at each time are a linear (really affine) function of the activity of timepoint t. We’ll
brush over the dynamics within motor cortex (though you’ll cover it in your dynamical systems
class), and focus instead on the linear map that relates neural activity to motor output. Call
the neural activity at each timepoint gt ∈ RN , where N is the number of neurons, and call the
signal it sends the muscles at each timepoint st ∈ RM where M is the dimensionality of your
muscle control space (an example signal your motor cortex might send your muscles would be
’flex your deltoid you slovenely rascal!’). Then, the (common) linear assumption is that:

st = Rgt R ∈ RM×N (6.4)

1. You have many more neurons (N) than muscles (M). What can you infer about the dimen-
sionality of the kernel of R?

2. Let’s simplify, you’re a small lunar dwelling pogo stick that subsists on regolith, buried ice,
and the abundant supply of American flags. You have two neurons in your motor cortex
(N = 2) that together control your pogo stick activating muscle (M = 1). Let’s choose to
work in a basis in which R =

[
1 0

]
. Now describe the kernel again?

3. You’re lounging around with your pogostick buddies when you’re surprised to see your
friend’s motor cortex activating, even though their pogo is perfectly still. Given that you
know equation 6.4 is true, what must be happening in their motor cortex? (Describe the
neural activity up to an unknown time dependent scalar)

4. These kinds of ponderings about real neural systems have led people to break motor cor-
tical neural activity into output-potent and output-null subspaces. Neural activity in the
output-potent subspace appears to drive muscle behaviour, conversely, neural activity in
the output-null space has no effect on current muscle activities. Relate these terms (output-
potent, output-null) to the kernel of R.

Why do animals have an output-null space? When you are preparing to perform an action
your motor cortex activates in stereotypical ways. For example, if you’re preparing to extend or
contract your pogo stick, the neural activity will move to two different points in the output-null
space. When you then initiate the action the neural activity spins off into the output-potent
space with a trajectory that is determined by its starting point in the output-null space.
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6.8 Neuro Q4: Invertibility & Trichromatic Theory of Colour

Colour matching experiments, first done in the early 19th century, demonstrated a suprising
phenomenon. You are shown a beam of coloured light. You are given three other beams of
differently coloured light to play with. It turns out you can mix together your three beams with
appropriate intensities to recreate the original colour, for many choices of the colours of your
three beams. Further, this is not possible with only 2 beams (for most people), and there is
only one mixture that works for each demonstrated colour. This is very good news for digital
screen makers, since now they can make a pixel with three colours (RGB) and, by changing their
intensities, they can generate most colours. This is also very surprising - why is this true? The
resolution of this surprise is the trichromatic theory of colour, first developed by Thomas Young
in 1802.

A light’s colour is its spectral content, i.e. how much of each wavelength is present in the light.
You are only able to see wavelengths in the visible range, between 400nm and 700nm, therefore
let’s write the spectral content of some incident light as a vector I ∈ R300: Ii encodes the
intensity of the incident light between 400 + i and 400 + i+ 1 nanometres. You can see things,
therefore you must contain a receptor that activates when there is light. How it responds will
vary depending on the wavelength of light (most simply, you don’t respond to light beyond the
visible range). Denote with t ∈ R300 the tuning of a receptor, how much it responds to one unit
of intensity at each wavelength. Finally, assume the response of a receptor to broadband light is
a linear function of the light intensity: r = tT I.

1. Use linear algebra and invertibility to explain why the colour matching experiments are
evidence for the trichromatic theory of colour? (This exercise in linear algebra was first
done by James Clark Maxwell in the 1850s, who then used these ideas to develop the first
ever colour photograph - go linear algebra!)

2. Metamers are objects that are different, but perceptually the same. Call the three receptor
tunings t1, t2 and t3, and stack them into a matrix T :

T =

− tT1 −
− tT2 −
− tT3 −


Given two metamer’s spectral contents, I1 and I2, derive an expression relating T , I1, and
I2. What space does I1 − I2 live in?

3. The colour of an object depends both on its reflectance properties, and the spectrum of
the illuminating light. Explain why two colours might look the same in bright sunlight,
but different under a halogen light?

4. The spatial denisty of your cone cells is very high in the fovea, but much lower in the rest
of the retina. Use this to explain metameric failures: colours that appear the same when
viewed in the periphery, but not when centrally fixated. Why does the same not happen
when going from fovea to periphery?

5. I made a mistake, I am actually a honey-bee with 3 cones, two like humans, and one in
the ultraviolet. Let’s pretend their response properties don’t overlap (i.e. the UV cone
responds only to light > 700nm, the other two to light < 700nm). How would you test this
with colour matching and what would the result be if I was or wasn’t a bee.
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6. If we had more cones we would be able to see more colours. Think biologically, why might
we not have more cones?

7. At dawn and dusk both your rods and your cones play an important role in vision, how
could this change the experimental results?

8. Computer screens effectively do the colour matching experiment on you. However, it is not
possible to emit negative amounts of light at a particular wavelength. Explain why this
means that our RGB system does not explore the full range of colours.

9. If our receptors were nonlinear would the original experiments still suggest we have three
cones?

The last question feels like evidence that linear encoding has other advantages. You might be
able to make some guesses about what these advantages are when you’ve finished the linear
algebra content!
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Chapter 7

Eigendecomposition

Motivation

In the previous section we saw that, sometimes, when we change the basis the matrix
became very simple. Sometimes we could even make it diagonal. This section explores
describes the ideas that perform exactly this diagonalisation.

7.1 Eigenvectors, Eigenvalues, Spectrums, Eigenspaces

First Definitions

Definition 41. let u ∈ L(Rn), and λ ∈ R.

1. If there exists some ∃x ̸= 0 s.t. u(x) = λx, we say that λ is an eigenvalue of u,
and x is an eigenvector.

2. Given an eigenvalue λ, the set of all eigenvectors associated with λ, e.g
{x ∈ Rn, u(x) = λx}, is called the eigenspace associated with λ, denoted Eλ.

3. The (possibly empty) set {λ1, . . . , λk} of eigenvalues of u is called the spectrum of
u, and is denoted sp(u).

101
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Casually Explained

Eigenvectors are directions in which the endomorphism u simply scales the vector by a
factor λ, without changing its direction. Eigenvectors uncover sometimes hidden simplicity
in what may otherwise look like complicated mappings, as we see in the exercise sheet.

7.1.1 Properties of Eigenvalues and Eigenvectors

Eigenvectors make life much easier. Now we try and show that if we can find enough eigenvectors
we can perform exactly the diagonalisation we hinted towards at the beginning.

Proposition 36. Let λ ∈ R be an eigenvalue of some u ∈ L(Rn). Then its corresponding
eigenspace, denoted Eλ, is a vector subspace of Rn.

Eigenspaces are stable

Stability of a subspace by an endomorphism

Definition 42. Let u ∈ L(Rn) and F be subspaces of Rn. We say that F is stable by u
if u(F ) ⊂ F .

Stability of eigenspaces

Proposition 37. Let u ∈ L(Rn). Let λ ∈ R be an eigenvalue of u. Then the eigenspace
associated with λ is stable under u, i.e. u(Eλ) ⊂ Eλ.

Proof. Let x ∈ Eλ. Then u(x) = λx ∈ Eλ. Thus, u(x) ∈ Eλ, and Eλ is stable under
u.

Eigenvectors are linearly independent

Proposition 38. Let u ∈ L(Rn). Let {e1, . . . , ek} a family of k eigenvectors, associ-
ated with their respective eigenvalues λ1, . . . , λk. Assume that λi ̸= λj for i ̸= j. Then
{e1, . . . , ek} is linearly independent.

Proof

Proof. By induction on k ∈ N.

1. If k = 1, then {e1} is linearly independent.

2. Assume the result holds for some k ≥ 1. Let us prove that it also holds for k + 1.
Let {e1, . . . , ek+1} be a family of considered eigenvectors. Let µ1, . . . , µk+1 ∈ R such
that

k+1∑
i=1

µiei = 0
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applying u to both sides of the last equality, we get:

u

(
k+1∑
i=1

µiei

)
=

k+1∑
i=1

λiµiei = 0

Subtracting λk+1 times the first equality we get:

0 =

k∑
i=1

(λi − λk+1)µiei = 0

Which implies µi = 0 for all i ≤ k since λi ̸= λk+1 for all 0 ≤ i ≤ k and {e1, . . . , ek}
is linearly independent. Consequently:

µk+1ek+1 = 0

meaning that µk+1 = 0, and {e1, . . . , ek+1} is linearly independent.

This proposition shows us how eigenvectors with different eigenvalues are linearly independent.
What if we have repeated eigenvalues? (Multiple linearly independent eigenvectors with the
same eigenvalue). We show that we can create a basis for each of these eigenspaces and combine
them to create a big set of linearly independent vectors in the same way we can combine distinct
eigenvectors.

Proposition 39. Let u ∈ L(Rn), and let Bi = {ei1, . . . eini
} a basis of Eλi

(of dimension ni) where (λi)1≤i≤k are the eigenvalues of u. Then the vectors
{e11, . . . , e1n1

, . . . , ek1, . . . , eknk
} are linearly independent.

Proof

Proof. Let µ11, . . . , µknk
∈ R such that:

k∑
i=1

ni∑
j=1

µijeij = 0. Since

k∑
i=1

ni∑
j=1

µijeij =

k∑
i=1

1× (

ni∑
j=1

µijeij) = 0

For all i,
ni∑
j=1

µijeij ∈ Eλi
, and non-0 eigenvectors are linearly independent. Therefore, we

must have that
ni∑
j=1

µijeij = 0 for all i. Since {ei1, . . . , eini} are linearly independent, we

must have that µij = 0 for all i, j.

The two last results show that it is possible to create linearly independent families of vectors by
concatenating bases of eigenspaces. It is natural to ask: can this family span the whole of Rn? In
other words, can it be a basis of Rn? This question gives rises to the notion of diagonalizability.
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7.2 Diagonalizability

Diagonalizability

Definition 43. We say that some u ∈ L(Rn) is diagonalizable if there exists a basis B
of Rn comprised only of eigenvectors of u.

Diagonalizable endomorphisms are represented by diagonal matrices

This is a very important remark: from the definition of diagonalizablity, we have that if
some u ∈ L(Rn) is diagonalizable, we have by definition:

MatBB(u) = D :=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


where λ1, . . . , λn are the respective eigenvalues of e1, . . . , en ∈ B. This equality holds from
the fact that u(ei) = λiei, e.g. [u(ei)]B = (λiδij)1≤j≤n. Consequently, for the matrix M
such that u(x) = Mx (e.g. M represents u in the canonical basis), we have:

M = PDP−1

for P the change of basis matrix from B to the canonical basis. The last equality is the
traditional matrix definition of diagonalizability.

How diagonalizable endomorphism act on inputs

For some diagonalizable u ∈ L(Rn), let B = {e1, . . . , en} its associated basis of eigenvec-

tors, and let {λ1, . . . , λn} be their respective eigenvalues. Let x =
n∑

i=1

µiei. Then we have

the important formula:

u(x) = u

(
n∑

i=1

µiei

)
=

n∑
i=1

λiµiei

7.2.1 Sufficient Condition for Diagonalization

In general finding whether a matrix is diagonalisable can be a challenge. We give one simple
sufficient condition here.

Proposition 40. Let u ∈ L(Rn). Assume that u admits n distinct eigenvalues λ1, . . . , λn

(e.g., i ̸= j =⇒ λi ̸= λj). Then u is diagonalizable.

Proof. If λ1, . . . , λn are distinct, then the eigenvectors associated with these eigenvalues
are linearly independent, meaning that we can create a basis of Rn by concatenating these
eigenvectors, and that u is diagonalizable.
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7.3 Symmetric Endomorphisms and the Spectral Theorem

We conclude this section on eigendecomposition by showing the diagonalizability of a very large
class of matrices: symmetric matrices. Not only are these endomorphisms diagonalizable, but
they are diagonalizable in an orthogonal basis, which is a very strong property. This result is so
pervasive it has its own name: the Spectral Theorem. We start by recalling the definition of a
symmetric matrix.

Definition 44. A matrix A ∈ L(Rn) is said to be symmetric if A = AT .

There exists an alternative functional definition of symmetric matrices, which is useful for proving
the spectral theorem:

Proposition 41. Let u : x 7−→ Ax ∈ L(Rn). Then we have that A is symmetric if and
only if:

⟨u(x), y⟩ = ⟨x, u(y)⟩

for all x, y ∈ Rn. We say that u is a symmetric endomorphism

Proof.

• =⇒ : Let x, y ∈ Rn. The ⟨x,Ay⟩ = xTAy = (Ax)T y = ⟨Ax, y⟩.

• ⇐= : Recall that A = MatBB(u) where B is the canonical basis of Rn. Then we have
that: Aij = [u(ej)]B,i = ⟨u(ej), ei⟩ = ⟨ej , u(ei)⟩ = [u(ei)]B,j = Aji.

To prove the spectral theorem, we need the following lemma, which is admitted, but can be
proved using calculus results.

Lemma 2. Let u ∈ L(Rn) be a symmetric endomorphism. Then u admits at least one
real eigenvalue.

From this result, it is possible to show the spectral theorem, which states that any symmetric
endomorphism is diagonalizable in an orthonormal basis.

Lemma 3. Let u ∈ L(Rn) be a symmetric endomorphism. Then u is diagonalizable in
an orthonormal basis of eigenvectors.

Proof. The result is proven by induction on the dimension n of u′s domain.

• In the case n = 1, we have that u(x) = x× u(1) as x is a scalar.

Taking x/|x| as the basis vector, we have that u is diagonal in this basis, and that
basis is orthonormal.

• Assume now that every symmetric endomorphism in dimension n−1 is diagonalizable
in an orthonormal basis. Now u ∈ L(Rn), from the lemma above, we have that u
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admits at least one real eigenvalue λ1. Let e1 be an associated eigenvector, which
we take of length 1. Let E1 = span(e1). Then it turns out that E⊥

1 is stable under
u: for all x ∈ E⊥

1 , ⟨u(x), e1⟩ = ⟨x, u(e1)⟩ = ⟨x, λ1e1⟩ = λ1 ⟨x, e1⟩ = 0, and thus all
u(x) ∈ E⊥

1 . Consequently, E⊥
1 is stable under u.

• We can now define
v : E⊥

1 −→ E⊥
1

x 7−→ u(x)

the restriction of u to E⊥
1 . Since dim(E⊥

1 ) = n − 1, we can use the induction
hypothesis to get that v is diagonalizable in an orthonormal basis B = {e2, . . . , en}.
Since for all u(ei) = v(ei) = λiei, for all i ≥ 2, we have that these vectors are also
eigenvectors of u. To obtain an orthonormal basis of Rn comprised of eigenvectors
of u, we can concatenate e1 with B (we leave as a exercise the proof that this
concatenation is indeed an orthonormal basis)

The spectral theorem admits an equivalent matrix version, which is very important and should
be remembered:

Corollary 3. Let A ∈ L(Rn) be a symmetric matrix. Then there exists an orthogonal
matrix P and a diagonal matrix D such that:

A = PDPT

e.g. A is similar to a diagonal matrix.

We will define properly what “orthogonal matrix” means and prove the corollary in the
next chapter.

7.3.1 Positive Definite Matrices

Before closing we consider an interesting class of symmetric matrices.

Positive (Semi-)Definite Matrix

Definition 45. A symmetric matrix, A ∈ Rn×n, is positive semidefinite if ∀x ∈ Rn,
xTAx ≥ 0. It is positive definite if the inequality is strict.

The exercise sheet develops a few interesting properties of this class of matrix.

Dot Product Matrices

The exercise sheet tells us that we can see any positive semi-definite matrix as a matrix
whose elements are the dot-products of a set of vectors, the columns of B, bi:

Aij = bTi bj

These kinds of matrices pop up all over the place. For example in the next lecture on
PCA.
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7.4 Exercise Sheet 8: Eigendecomposition

Familiarizing Exercises

Exercise 65. Consider the linear map u : x ∈ R2 7−→ Mx ∈ R2, with

M =
1

2

[
3 −1
−1 3

]
1. Show that (1,−1) and (1, 1) are two eigenvectors of u, and find their eigenvalues.

2. Deduce a diagonal matrix similar to M .

3. Find a vector in R2 that is not an eigenvector of u.

4. Show that Mn := M × · · · ×M︸ ︷︷ ︸
n times

is similar to a diagonal matrix, for any n ≥ 0.

Solution. 1. We apply M to the given vectors:

M(1,−1)⊤ =
1

2

[
3 −1
−1 3

] [
1
−1

]
=

1

2

[
3− (−1)
−1− 3

]
=

1

2

[
4
−4

]
=

[
2
−2

]
= 2(1,−1)⊤.

So (1,−1) is an eigenvector with eigenvalue λ = 2.

Similarly,

M(1, 1)⊤ =
1

2

[
3 −1
−1 3

] [
1
1

]
=

1

2

[
3− 1
−1 + 3

]
=

1

2

[
2
2

]
=

[
1
1

]
= 1(1, 1)⊤.

So (1, 1) is an eigenvector with eigenvalue λ = 1.

2. Let P =

[
1 1
−1 1

]
be the matrix whose columns are the eigenvectors. Define the

diagonal matrix

D =

[
2 0
0 1

]
.

Then M = PDP−1, so M is similar to the diagonal matrix D.

3. Any vector that is not a scalar multiple of either (1,−1) or (1, 1) is not an eigenvector.
For instance, v = (1, 0) is not an eigenvector. To check:

M(1, 0)⊤ =
1

2

[
3
−1

]
=

(
3

2
,−1

2

)⊤

,

which is not a scalar multiple of (1, 0), so (1, 0) is not an eigenvector.

4. Since M is similar to the diagonal matrix D, for any n ∈ N,

Mn = PDnP−1.

Hence, Mn is similar to the diagonal matrix Dn, which is given by

Dn =

[
2n 0
0 1n

]
=

[
2n 0
0 1

]
.

■
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Exercise 66. Let u be a non-injective endomorphism of Rn. Show that u has at least one
eigenvalue, and find its value.

Solution. Since u is a non-injective endomorphism of Rn, the kernel of u is nontrivial:

∃x ∈ Rn, x ̸= 0 such that u(x) = 0.

This means that x is an eigenvector associated to the eigenvalue λ = 0, since

u(x) = 0 = 0 · x.

Thus, 0 is an eigenvalue of u. Hence, any non-injective endomorphism has λ = 0 as an
eigenvalue. ■

Not all endomorphisms are diagonalizable!

Exercise 67.

• Let u : R2 7−→ R2 such that u(e1) = e2 and u(e2) = −e1. Show that u does not
admit any eigenvalues.

• Deduce an endomorphism of R3 that admits only one eigenvalue.

Solution. • We are told that the linear map u : R2 → R2 satisfies:

u(e1) = e2, u(e2) = −e1.

Let x = ae1 + be2 ∈ R2. Then:

u(x) = au(e1) + bu(e2) = ae2 − be1.

Suppose x is an eigenvector of u with eigenvalue λ. Then:

u(x) = λx = λ(ae1 + be2) = λae1 + λbe2.

Comparing both expressions for u(x), we get:

−be1 + ae2 = λae1 + λbe2.

Matching coefficients: {
−b = λa,

a = λb.

Substituting the second equation into the first:

−b = λ(λb) ⇒ −b = λ2b.

If b ̸= 0, we can divide both sides by b:

−1 = λ2 ⇒ λ2 = −1,

which has no solution in R.
If b = 0, then from the second equation a = λb = 0. So x = 0, which is not allowed
for eigenvectors.

Therefore, u does not admit any eigenvalues in R.
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• Now we build an endomorphism v ∈ L(R3) that admits only one eigenvalue. Let:

v(e1) = e2, v(e2) = −e1, v(e3) = e3.

This extends the previous map to R3. If x = ae1 + be2 + ce3, then:

v(x) = ae2 − be1 + ce3.

Suppose x is an eigenvector of v, so v(x) = λx. Then:

ae2 − be1 + ce3 = λ(ae1 + be2 + ce3) = λae1 + λbe2 + λce3.

Matching coefficients: 
−b = λa,

a = λb,

c = λc.

From the third equation, if c ̸= 0, then λ = 1.

For the first two equations, proceed as before:

−b = λa, a = λb ⇒ −b = λ2b ⇒ λ2 = −1,

which again has no real solution unless a = b = 0.

So the only real eigenvectors are scalar multiples of e3, with eigenvalue λ = 1.
Therefore, v admits only one eigenvalue over R.

■

Important Exercise

Exercise 68. Let (x(t))t∈N ∈ (Rn)N be a sequence of vectors governed by the equation:{
x(0) = x0

x(t+ 1) = Wx(t)

For W ∈ L(Rn) a diagonalizable matrix. x(t) can be understood as modelling the evolution
of the firing rate of a network of interconnected neurons.

• Write the solution x(t) as a function of the eigenvalues and eigenvectors of W , and
the coordinates of x0 in the basis of eigenvectors of W .

• Find a necessary condition on the eigenvalues of W for the coordinates of x(t) to be
bounded, for all t.

Solution. Since W ∈ L(Rn) is diagonalizable, there exists a basis (v1, . . . , vn) of eigenvec-
tors of W , with corresponding eigenvalues λ1, . . . , λn ∈ R, such that:

Wvi = λivi for each i = 1, . . . , n.

1. Expression for x(t) in the eigenbasis:
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We express the initial condition x0 ∈ Rn as a linear combination of the eigenvectors:

x0 =

n∑
i=1

αivi,

for some scalars α1, . . . , αn ∈ R. This gives:

x(0) = x0 =

n∑
i=1

αivi.

We now compute the iterates of x(t) using the recurrence x(t+1) = Wx(t). By induction:

x(1) = Wx(0) =

n∑
i=1

αiWvi =

n∑
i=1

αiλivi,

x(2) = Wx(1) =

n∑
i=1

αiλiWvi =

n∑
i=1

αiλ
2
i vi,

and in general:

x(t) =

n∑
i=1

αiλ
t
ivi.

2. Condition for boundedness:
We now analyze under what conditions the sequence x(t) remains bounded as t → ∞.
Since:

x(t) =

n∑
i=1

αiλ
t
ivi,

the growth of x(t) depends on the magnitude of each λt
i. For the term αiλ

t
ivi to remain

bounded for all t, it is necessary that |λi| ≤ 1.
In fact, if |λi| > 1 for some i with αi ̸= 0, then λt

i → ∞ and x(t) will become unbounded.
Therefore, a necessary (and sufficient) condition for x(t) to remain bounded for all t is:

|λi| ≤ 1 for all i = 1, . . . , n.

■

Diagonalisable

Exercise 69. Let A ∈ L(Rn) be a diagonalizable matrix, i.e. there exist an invertible
matrix U and a diagonal matrix D such that A = UDU−1, show that the rank of A is
equal to the number of non zero eigenvalues.

Solution. Let A ∈ L(Rn) be a diagonalizable linear map. By assumption, there exists an
invertible matrix U ∈ Rn×n and a diagonal matrix D ∈ Rn×n such that

A = UDU−1.

This means that A is the matrix representation of the same linear map as D, but in
a different basis. Since a change of basis does not affect the rank of a linear map, we
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conclude:
rank(A) = rank(D).

Now, since D is diagonal, its rank is simply the number of nonzero entries on the diagonal,
that is, the number of nonzero eigenvalues of A (counted without multiplicity).

rank(A) = #{i : λi ̸= 0} ,

where λ1, . . . , λn are the eigenvalues of A. ■

Exercise 70. Let a ∈ Rn, b ∈ Rd. What is the size of the matrix ab⊤? What are the
entries of ab⊤? What is the rank of ab⊤? If a = b, what are the eigenvalues/eigenvectors
of aa⊤ ? If a has norm 1, and x ∈ Rn what is aa⊤x doing?

Solution. Let a ∈ Rn and b ∈ Rd. We analyze each question in turn.
1. Size of the matrix ab⊤:
The vector a is of size n× 1, and b⊤ is of size 1× d, so the product ab⊤ is a matrix of size:

ab⊤ ∈ Rn×d.

2. Entries of the matrix ab⊤:
Each entry of the matrix ab⊤ is given by:

(ab⊤)ij = aibj ,

for all 1 ≤ i ≤ n, 1 ≤ j ≤ d. This means each row of ab⊤ is a scalar multiple of b⊤, and
each column is a scalar multiple of a.
3. Rank of ab⊤:
We claim that ab⊤ has rank at most 1. Indeed, every column of ab⊤ is a scalar multiple
of a. Explicitly, the j-th column of ab⊤ is:

(ab⊤):,j = abj .

So all columns lie in the one-dimensional subspace spanned by a. Therefore:

rank(ab⊤) =

{
1 if a ̸= 0 and b ̸= 0,

0 otherwise.

4. Eigenvalues/eigenvectors of aa⊤:
Now assume a = b ∈ Rn, so that A = aa⊤ ∈ Rn×n. We analyze the eigenvalues of A.
Step 1: Show a is an eigenvector.
Let us compute:

aa⊤a = a(a⊤a) = ∥a∥2a.

So a is an eigenvector of A with eigenvalue ∥a∥2.
Step 2: Show all vectors orthogonal to a are eigenvectors with eigenvalue 0.
Let x ∈ Rn be such that x ⊥ a, i.e. a⊤x = 0. Then:

aa⊤x = a(a⊤x) = a · 0 = 0.

So x is an eigenvector of A with eigenvalue 0.
Conclusion:
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The eigenspace of eigenvalue ∥a∥2 is Span(a), and the eigenspace of eigenvalue 0 is {a}⊥,
which has dimension n− 1. Therefore, the eigenvalues of aa⊤ ∈ Rn×n are:{

∥a∥2 (multiplicity 1),

0 (multiplicity n− 1).

5. Action of aa⊤ on x, when ∥a∥ = 1:
Assume ∥a∥ = 1, and let x ∈ Rn. Then:

aa⊤x = a(a⊤x) = ⟨a, x⟩a.

This is the projection of x onto the direction of a. Therefore,

aa⊤x = proja(x) .

So aa⊤ acts as the orthogonal projection matrix onto the subspace spanned by a, provided
that a is a unit vector. ■

Symmetric Matrix

Exercise 71. Show that a symmetric matrix A ∈ Rn×n can be written:

A =

n∑
i=1

λiuiu
T
i λi ∈ R, ui ∈ Rn

Solution. We assume A ∈ Rn×n is symmetric. By the spectral theorem, there exists an
orthonormal basis of eigenvectors (u1, . . . , un) of Rn, with corresponding real eigenvalues
λ1, . . . , λn, such that:

Aui = λiui, and uT
i uj = δij for all i, j.

Let us now show that:

A =

n∑
i=1

λiuiu
T
i .

We will do this by checking that this expression behaves the same as A when applied to
an arbitrary vector x ∈ Rn.
Since (u1, . . . , un) is an orthonormal basis, we can write:

x =

n∑
i=1

⟨x, ui⟩ui =

n∑
i=1

(uT
i x)ui.

Now apply A to x, using linearity and the eigenvector property:

Ax = A

(
n∑

i=1

(uT
i x)ui

)
=

n∑
i=1

(uT
i x)Aui =

n∑
i=1

(uT
i x)λiui.

On the other hand, consider the expression:(
n∑

i=1

λiuiu
T
i

)
x =

n∑
i=1

λiui(u
T
i x) =

n∑
i=1

(uT
i x)λiui,
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which is exactly the same expression as above. Thus, for all x ∈ Rn,

Ax =

(
n∑

i=1

λiuiu
T
i

)
x,

so the two matrices must be equal:

A =

n∑
i=1

λiuiu
T
i .

Interpretation: Each matrix uiu
T
i is a rank-1 symmetric projection matrix onto the

direction ui. The scalar λi tells how strongly A acts along the direction ui. The matrix A
is thus a weighted sum of these orthogonal projections, and this expression reveals both
the spectral structure and the geometric action of A. ■

Positive Semi-Definite Matrix

Exercise 72. Show that any positive definite matrix is invertible.

Solution. Let A ∈ Rn×n be a symmetric positive definite matrix. By definition, this
means:

∀x ∈ Rn \ {0}, xTAx > 0.

Suppose for contradiction that A is not invertible. Then there exists x ∈ Rn \ {0} such
that Ax = 0. But then:

xTAx = xT · 0 = 0,

which contradicts the positive definiteness of A, since x ̸= 0 implies xTAx > 0.
Therefore, A must be invertible. ■

Exercise 73. Let A ∈ L(Rn) be a symmetric matrix with eigenvalues {λ1, . . . , λn}. Show
that λi ≥ 0 for all i = 1, . . . , n implies that A is positive semi definite. Show that λi > 0
for all i = 1, . . . , n implies that A is positive definite. Hint: consider the orthonormal basis
of eigenvectors for A. For x ∈ Rn, decompose x on this basis and develop x⊤Ax.

Solution. Since A ∈ L(Rn) is symmetric, the spectral theorem applies: there exists an
orthonormal basis {u1, . . . , un} of Rn consisting of eigenvectors of A, with corresponding
real eigenvalues λ1, . . . , λn, such that

A =

n∑
i=1

λiuiu
T
i .

Let x ∈ Rn, and write its decomposition in the orthonormal basis:

x =

n∑
i=1

αiui, where αi = uT
i x.

We now compute the quadratic form:

xTAx = xT

(
n∑

i=1

λiuiu
T
i

)
x =

n∑
i=1

λi(u
T
i x)

2 =

n∑
i=1

λiα
2
i .
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Now analyze the conditions:
(1) If λi ≥ 0 for all i, then:

xTAx =

n∑
i=1

λiα
2
i ≥ 0 for all x ∈ Rn.

Hence, A is positive semi-definite.
(2) If λi > 0 for all i, then for any x ̸= 0, there exists at least one i such that αi ̸= 0,
and so:

xTAx =

n∑
i=1

λiα
2
i > 0.

Hence, A is positive definite. ■

Exercise 74. The matrix A ∈ Rn×n is constructed from B ∈ Rm×n via A = BTB. Show
that A is positive semi-definite.

Solution. We are given a matrix A ∈ Rn×n defined as A = BTB, where B ∈ Rm×n. A is
symmetric. We aim to show that A is positive semi-definite, i.e., for all x ∈ Rn,

xTAx ≥ 0.

For any x ∈ Rn,
xTAx = xTBTBx = (Bx)T (Bx) = ∥Bx∥2 ≥ 0.

Therefore, A = BTB is positive semi-definite. ■

Exercise 75. Show that if rank(B) ≥ n, A is positive definite.

Solution. We are given that A = BTB, where B ∈ Rm×n, and we are told that rank(B) ≥
n. Since B ∈ Rm×n, this implies m ≥ n, and rank(B) = n. That is, the columns of B are
linearly independent.
We want to show that A = BTB is positive definite. That is, for all x ∈ Rn \ {0},

xTAx = xTBTBx = ∥Bx∥2 > 0.

As rank(B) = n, the kernel of B is {0}. So if x ∈ Rn \ {0}, then Bx ̸= 0. Thus,

∥Bx∥2 > 0,

and hence
xTAx = ∥Bx∥2 > 0.

For all x ̸= 0, we have xTAx > 0, so A is positive definite. ■

Exercise 76. Show that all positive semi-definite matrices, A, can be decomposed as
A = BTB for some matrix B.

Solution. Let A ∈ Rn×n be a symmetric positive semi-definite matrix. By the spectral
theorem, there exists an orthogonal matrix P ∈ Rn×n and a diagonal matrix D =
diag(λ1, . . . , λn) with λi ≥ 0 such that

A = PDPT .
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Let
√
D be the diagonal matrix with entries

√
λ1, . . . ,

√
λn. Define

B :=
√
DPT .

Then:
BTB = P

√
D
√
DPT = PDPT = A.

Conclusion: Every symmetric positive semi-definite matrixA can be written asA = BTB
with B =

√
DPT . ■

Exercise 77. When A and B are positive definite matrices AB might not even be sym-
metric, but it’s eigenvalues are positive. Show this, by starting from ABx = λx and taking
dot products with Bx.

Solution. Let A,B ∈ Rn×n be symmetric positive definite matrices. Suppose x ∈ Rn \{0}
and that ABx = λx for some eigenvalue λ ∈ R.
We take the dot product of both sides of the equation with Bx:

(ABx)TBx = λxTBx.

Note that (ABx)TBx = xTBTATBx = xTBABx, since A and B are symmetric. So we
have:

xTBABx = λxTBx.

Now observe:
- xTBABx > 0 because Bx ̸= 0 (since B is positive definite), and A is positive definite,
so:

xTBABx = (Bx)TA(Bx) > 0.

- xTBx > 0, again because B is positive definite.
Therefore, we conclude that

λ =
xTBABx

xTBx
> 0.

Conclusion: Even though AB is not symmetric, its eigenvalues are strictly positive when
A and B are positive definite. ■
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7.5 Neuro Q5: Eigenspaces & Line Attractors

In this question we will unleash the power of linear algebra to design a network of neurons. Our
goal is to use these neurons to encode a continuous variable and preserve memory of that vari-
able over time. By encode we mean that there must be a mapping between the variable and the
behaviour of the neurons so that the animal can use the neurons as a proxy for the variable. For
example, the variable might be “the distance between me and the nearest supermarket bakery
section”. If you have a set of neurons that encode this variable you can use them to direct your
behaviour: e.g. find the direction that your neurons tell you most decreases the distance, then
walk forward. Further, we want these neurons to keep representing the variable even if you get
no input telling you what the variable is, e.g. if you close your eyes. Sound good? Let’s go.

Let’s call the scalar variable s ∈ R and lets call the neural encoding g : R → RN where N is
the number of neurons, i.e. the encoding is a function that maps s to a vector of associated
neural activities. We now specify our nice simple model of neurons (though that doesn’t make
it a trivial model, many interesting models of neural function are similar to this one).

We have a population of N neurons. Each of them receives inputs from all the other neurons.
We will represent the activity of the neurons as a real number, roughly interpreted as the rate of
spiking (minus a baseline so it can be negative too!). Each neuron projects its activity through
its axon, which proceeds to hit the dendrites of the other neurons. In this way, one neuron
influences all the others, mediated by the synapses. We will model this as the firing rate of each
neuron at timepoint t+ 1, gn,t+1 being a weighted sum of the others, weighted by the synaptic
connections:

gn,t+1 =

N∑
n′=1

Wn,n′gn′,t

where Wn,n′ is the strength of the connection from neuron n′ to neuron n. In other words,
grouping the N firing rates into the vector g, their behaviour is given by the following linear
equations:

gt+1 = Wgt

The goal of this population is to encode a variable s. Say the initial activity at time t = 0 is
g0 = g(s), perhaps via the activity of sensory inputs, and let’s assume that W is diagonalisable.
Recall: this means the behaviour of any vector of firing rates can be understood by thinking
about the behaviour of the eigenvectors, and the coefficients of the vector in the eigenbasis.

1. First things first, we want to be able to leave the neurons on their own for a long time,
come back, and find that they have not exploded. No neuron can fire with an arbitrarily
large firing rate! How must we choose the eigenvalues of W to stop this?

2. Okay, but we also want the neural population to keep a memory of the variable s no matter
how long we wait. What must at least one of the eigenvalues equal for this to be true?

3. Given your answers to the previous two questions, on which eigenspace will the activity
eventually land? Call this the line attractor. (for reasons that should make sense)

Now, so far we have argued that the line attractor should exist, but nothing more, in particular
we don’t care about which direction it points.
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4. Justify why pointing the line attractor along the first canonical basis vector would mean
only a single neuron would encode the variable.

5. Let’s assume you point the line attractor along a neuron’s axis. Use biological reasoning
to argue why this might not be a good idea?

We’ve made interesting conclusions about how biological constraints force us to construct our
line attractor. We also think neurons are noisy (which just means ‘they fire and we can’t always
work out why’).
For example, a cosmic ray might skewer a set of neurons exciting them all, or the whole brain
might get more excitable if you start running. Let’s pretend that the following noise hits the
system:

g′n,t = gn,t + η

η =


0, with probability 0.98

1, with probability 0.01

−1, with probability 0.01

where 1 is the all-ones vector: either there is no noise, or it pushes all neurons either up or down.

6. Point the line attractor in the 1 direction. Assume the noise arrives, then the dynamics
are run until the activity is stationary. What is the mean difference between the position
the activity was at on the line attractor before we added the noise and after the activity is
left to settle back to the line attractor? What about the variance?

7. How can I choose my eigenstructure to ensure this noise doesn’t screw up my encoding?

Now, let’s zoom into the behaviour along the line attractor. Denote the component of the neural
activity within the line attractor at each time point as lt. Say there’s some noise along your line
attractor that multiplicatively scales your neural activity up:

ϵ ∼ N (0, σ2) η = 1 + |ϵ|

lt+1 = ληlt

9. Show the mean of η is now non-zero.

10. Explain why this is bad.

11. Let’s say now the noise tends to arrive every timestep, a different sample each time, how
can you change the eigenvalue of your line attractor so that on average lt+1 = lt?

Sometimes it is good to forget. For example, let’s say you close your eyes and are trying to keep
track of the position of your toddler in the playground. At first the toddler is likely to be close
to where you last saw them, but you know your toddler is full of energy and runs all over the
place, eventually you will have no idea where your toddler is, and you might as well guess any
position in the playground randomly. No need to waste effort remembering.

12. Let’s say you want to remember something for T timesteps, but after that you don’t care
and would like to forget. Roughly what should the eigenvalue of your line attractor be?
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Chapter 8

Singular Value Decomposition

8.1 Orthogonal Matrices

This section will introduce a very useful type of matrix, it pops up a lot, and if nothing else, the
rest of this lecture should justify its usefulness.

Orthogonal Matrix

Definition 46. A matrix, M ∈ Rn×n, is called orthogonal if its columns form an or-
thonormal basis.

Note that we call the matrix “orthogonal” but its columns form an “orthonormal” basis. The
columns of an orthogonal matrix always have norm 1!

Checking that a matrix is orthogonal

Proposition 42. A matrix M ∈ Rn×n is orthogonal if and only if: MTM = idn.

Proof

Let’s write the matrix in terms of its columns:

M =

 | ... |
c1 ... cn
| ... |


for ci ∈ Rn. Then we can use the statement that the columns form an orthonormal basis:

MTM =

− c1 −
...

...
...

− cn −


 | ... |
c1 ... cn
| ... |

 =


⟨c1, c1⟩ ⟨c1, c2⟩ ... ⟨c1, cn⟩
⟨c1, c2⟩ ⟨c2, c2⟩ ... ⟨c2, cn⟩

...
...

. . .
...

⟨cn, c1⟩ ⟨cn, c2⟩ ... ⟨cn, cn⟩

 =


1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 1


So we can see that ⟨ci, cj⟩ = δij if and only if MTM = idn.

119
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Example

An important example that illustrates these points is the following matrix:

M =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
This satisfies orthogonality:

MTM =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
=

[
cos2(θ) + sin2(θ) 0

0 cos2(θ) + sin2(θ)

]
= id2

Further, this makes sense from geometrically looking at the matrix, it is the two dimen-
sional rotation matrix!

Figure 8.1: This matrix is orthogonal, and simply performs a rotation.

Equivalent Characterisations of Orthogonality

Proposition 43. The following six propositions about a matrix M ∈ Rn×n are equivalent:

1. M is called orthogonal, i.e. its columns form an orthonormal basis

2. MTM = idn

3. MT = M−1

4. ∀x, y ∈ Rn, ⟨x, y⟩ = ⟨Mx,My⟩

5. ∀x ∈ Rn, ||Mx|| = ||x||

6. If a set of n vectors, {e1, ..., en} form an orthogonal basis, then so too do
{Me1, ...,Men}.

Proof. We prove the implications in a cycle: (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (1).
(1) ⇒ (2): See Proposition 42.
(2) ⇒ (3): See Exercise 56.
(3) ⇒ (4): Assume MT = M−1. Then for any x, y ∈ Rn,

⟨Mx,My⟩ = (Mx)T (My) = xTMTMy = xT Iy = ⟨x, y⟩.

(4) ⇒ (5): Take x = y in the inner product preservation condition:

∥Mx∥2 = ⟨Mx,Mx⟩ = ⟨x, x⟩ = ∥x∥2.



8.2. SINGULAR VALUE DECOMPOSITION 121

So ∥Mx∥ = ∥x∥.
(5) ⇒ (6): Let {e1, . . . , en} be an orthonormal basis. For any i, we have:

∥Mei∥ = ∥ei∥ = 1.

For i ̸= j, use the polarization identity:

⟨Mei,Mej⟩ =
1

2

(
∥Mei +Mej∥2 − ∥Mei∥2 − ∥Mej∥2

)
=

1

2
(∥ei + ej∥2 − 1− 1) = 0,

using the assumption that ∥Mx∥ = ∥x∥ for all x. Hence, {Me1, . . . ,Men} is also an
orthonormal basis.
(6) ⇒ (1): Apply (6) to the standard orthonormal basis {e1, . . . , en}. ThenMe1, . . . ,Men
form an orthonormal basis. These are precisely the columns of M , so the columns of M
form an orthonormal basis.

Proof of Corollary 3

Proof. Let us define an endomorphism u : Rn → Rn by u(x) = Ax. Since A is symmetric
(i.e., A⊤ = A), the map u is symmetric with respect to the standard inner product on Rn.
That is, for all x, y ∈ Rn, we have:

⟨u(x), y⟩ = ⟨Ax, y⟩ = x⊤A⊤y = x⊤Ay = ⟨x,Ay⟩ = ⟨x, u(y)⟩.

We now apply Lemma 3 to u. We obtain an orthonormal basis B = {v1, . . . , vn} of
eigenvectors of u, with corresponding real eigenvalues λ1, . . . , λn, such that:

u(vi) = λivi.

Let P ∈ Rn×n be the change-of-basis matrix from the canonical basis to the basis B. That
is, the i-th column of P is the vector vi. Since B is orthonormal, P is orthogonal and
P⊤ = P−1.
Let D = diag(λ1, . . . , λn). Then D is the matrix of the endomorphism u in the eigen-
basis B, and A is its matrix in the canonical basis. By the change-of-basis formula for
endomorphisms:

A = PDP−1 = PDP⊤.

8.2 Singular Value Decomposition

Motivation

When eigendecomposition and diagonalisation worked it gave us a very clean way to view
matrices: in some basis they are just scaling the coordinate axes, what could be simpler!

However, we found that not all matrices could be diagonalised, and eigenvalues are only
defined for square matrices. Today we will cover a more general decomposition that is
nearly as clean as eigendecomposition, and works all the time.



122 CHAPTER 8. SINGULAR VALUE DECOMPOSITION

Singular Value Decomposition

Theorem 4. Every matrix, A ∈ Rn×m can be written as the product of three simple
matrices:

A = USV T

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices and S ∈ Rn×m is diagonal.

Singular Values & Singular Vectors

Rewrite these three matrices as follows (for display purposes assume m > n, if not just
reverse everything):

U =

 | | |
u1 u2 · · · un

| | |

 , V =

 | | |
v1 v2 · · · vm
| | |

 , S =


σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
...

. . .
...

...
0 0 . . . σn 0 . . . 0


The vectors vi are called the right singular vectors, ui are the left singular vectors, and σi

are the singular values. We can see they obey some eigentastic equations:

Avi =

{
σiui ∀i ≤ n

0 ∀i > n
, ATui = σivi

Casual Explanation

This is a stunning result. For rectangular matrices this is the best generalisation of eigen-
decomposition we could have hoped for. Recall: eigenvectors are mapped to scaled versions
of themselves. Further, in the nicest setting, symmetric matrices, the eigenvectors form
an orthonormal basis. Since rectangular matrices map between spaces of different dimen-
sionalities, it would never have been possible for exactly this kind of result to hold (a two
dimensional vector can’t be a scaled version of itself if it lives in three dimensions...). But
we get the next best thing, there are a set of vectors in the input space, the right singular
vectors, that map to scaled version of another set of vectors in the output space. Further,
these two sets of vectors, appropriately completed if necessary, form an orthonormal basis
for the two spaces. This means that under some orthogonal transformation, all rectangu-
lar matrices are just a pairing between dimensions in the input and output space, with
a dimension-wise scaling! Finally, for square matrices, we are not able to diagonalise all
matrices, and even if we can the eigenbasis might not be orthonormal. However, if we
relax to singular vectors, these problems melt away, divine!

Singular value decomposition can be visually interpreted, therefore, as performing an
orthogonal transform V T , a scaling S, followed by an orthogonal transform in the output
space U , as shown in this figure.
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Figure 8.2: All matrices can be understood as the composition of an orthogonal transform,
a dimension-wise scaling, and an orthogonal transform!

To close, let’s prove the singular value decomposition exists, and find another characterization
of the singular values and vectors en route.

Proof

To begin, recall the following facts from the eigendecomposition lecture:

• The spectral theorem: any symmetric matrix is diagonalizable in an orthonormal
basis.

• Positive definite (resp. semi-definite) matrices A are those such that x⊤Ax > 0 (resp
x⊤Ax ≥ 0)

• Any positive definite matrix has only positive (resp. nonnegative) eigenvalues. In-
deed, for symmetric A this proof is a one-liner: for any x ∈ Rn:

x⊤Ax =

n∑
i=1

λi ⟨x, fi⟩2 ≥ 0,∀x ⇐⇒ λi ≥ 0

where {f1, . . . , fn} is the orthonormal basis of eigenvectors of A.

We now return to prove the main result. A ∈ Rn×m and we’ll assume n > m, if not take
the transpose, do the same thing, before transposing again at the end to get the same
result.
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1. First, realize that ATA ∈ Rm×m is symmetric positive semi-definite. Let us call
{v1, . . . , vm} the ONB of eigenvectors, with their associated eigenvalues λ1, . . . , λm

s.t λ1 ≥ · · · ≥ λm ≥ 0.

2. Let us denote:
σi = ∥Avi∥

=

√
∥Avi∥2

=
√
v⊤i A

⊤Avi

=
√
λi

which will make up the entries for our S matrix. Since λ1 ≥ . . . ,≥ λm ≥ 0,
σ1 ≥ . . . ,≥ σm ≥ 0.

3. Note that σi = 0 if and only if λi = 0, and for such λi’s, by the previous derivations,
we have ∥Avi∥ = 0 and therefore Avi = 0.

4. Let r ≤ m be the largest index such that σr > 0. For i = 1, . . . , r, let us denote
ui = 1

σi
Avi, which is possible since for i = 1, . . . , r, σi ̸= 0. For i = 1, . . . , r,

j = 1, . . . , r and λi ̸= λj , we have that:

⟨ui, uj⟩ =
1

σiσj
⟨Avi, Avj⟩

=
1

σiσj
v⊤i A

⊤Avj

=
λi

σiσj
δij = δij

Thus, {u1, . . . , ur} is an orthonormal system of Rn. Note that it cannot be an
orthonormal basis of Rn, since it has only r vectors and r ≤ m < n. We complete
the orthonormal system {u1, . . . , ur} into an orthonormal basis of Rn by adding n−r
vectors, which we denote by ur+1, . . . , un.

5. From the relationship Avi = σiui for i = 1, . . . , r and Avi = 0 = σiui for i =
r + 1, . . . ,m (since σi = 0 for i = r + 1, . . . ,m), we deduce that:

AV = A

 | | |
v1 v2 · · · vm
| | |

 =

 | | |
σ1u1 σ2u2 · · · σmum

| | |

 = Û Ŝ

Where Ŝ = diag(σ1, . . . , σm) ∈ Rm×m and

Û =

 | | |
u1 u2 · · · um

| | |


Since V is orthogonal, and therefore V −1 = V T we can write: AV = Û Ŝ =⇒ A =
Û ŜV ⊤. This is called the reduced singular value decomposition of A: it is not the
full svd of A because Û is not of size n × n, but only of size n ×m and Ŝ is not of
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size n×m, but only of size m×m . To complete Û into a matrix of size n× n we
had the columns um+1, . . . , un to it:

U =
[
Û U⊥

]
=

 | | |
u1 u2 · · · un

| | |


with U⊥ ∈ Rn×(n−m), and to complete Ŝ into a matrix of size n ×m, we just have
to pad Ŝ with zeros to get:

S =

[
Ŝ

0(n−m)×n

]
∈ Rn×m

We now show that

A = Û ŜV ⊤ = USV ⊤

Indeed, we have:

US =
[
Û U⊥

] [
Ŝ
0

]
= Û Ŝ,

which concludes the proof.
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8.3 Exercise Sheet 9: Orthogonal Matrices and SVD

Exercises

Exercise 78. Show that if two matrices A ∈ Rn×n and B ∈ Rn×n are orthogonal, so is
AB.

Solution. We are given that A,B ∈ Rn×n are orthogonal matrices. By definition, this
means:

ATA = In and BTB = In.

We want to show that the matrix product AB is also orthogonal, i.e., that:

(AB)T (AB) = In.

We compute:
(AB)T (AB) = BTATAB = BT InB = BTB = In,

since ATA = In and BTB = In by assumption. Thus, (AB)T (AB) = In, so AB is
orthogonal. ■

Exercise 79. A matrix A ∈ Rn×n can be diagonalised using an orthogonal matrix Q ∈
Rn×n: A = QDQ−1 for some diagonal matrix D. Show that it is symmetric.
Explain why this is like the converse of the spectral theorem.

Solution. We are given that a matrix A ∈ Rn×n can be diagonalized using an orthogonal
matrix Q, i.e., there exists a diagonal matrix D ∈ Rn×n such that

A = QDQ−1.

Since Q is orthogonal, we have Q−1 = QT , so we can write:

A = QDQT .

We now compute the transpose of A:

AT = (QDQT )T = (QT )TDTQT = QDQT = A,

since DT = D (as D is diagonal) and (QT )T = Q.
Hence, AT = A, and therefore A is symmetric.

Remark (Converse of the Spectral Theorem): The spectral theorem states that any
real symmetric matrix can be diagonalized by an orthogonal matrix. This exercise shows
the converse: if a real matrix can be diagonalized by an orthogonal matrix, then it must
be symmetric. So the two statements together characterize real symmetric matrices as
precisely those that are orthogonally diagonalizable. ■

Exercise 80. The matrix A can be written:

A =

1 0 x
0 cos(θ) y
0 sin(θ) z


Describe the values of (x, y, z) that make the matrix A orthogonal.
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Solution. We want to find the values of (x, y, z) ∈ R3 such that A is orthogonal, i.e.,

ATA = I.

Let us compute ATA. First, compute AT :

AT =

1 0 0
0 cos(θ) sin(θ)
x y z


Then compute ATA:

ATA =

1 0 0
0 cos(θ) sin(θ)
x y z

1 0 x
0 cos(θ) y
0 sin(θ) z


Compute each entry of the resulting matrix:
- First row:

(1, 0, 0) ·

10
0

 = 1, (1, 0, 0) ·

 0
cos(θ)
sin(θ)

 = 0, (1, 0, 0) ·

xy
z

 = x

- Second row:

(0, cos(θ), sin(θ)) ·

10
0

 = 0

(0, cos(θ), sin(θ)) ·

 0
cos(θ)
sin(θ)

 = cos2(θ) + sin2(θ) = 1

(0, cos(θ), sin(θ)) ·

xy
z

 = cos(θ)y + sin(θ)z

- Third row:

(x, y, z) ·

10
0

 = x, (x, y, z) ·

 0
cos(θ)
sin(θ)

 = y cos(θ) + z sin(θ)

(x, y, z) ·

xy
z

 = x2 + y2 + z2

Putting it all together:

ATA =

1 0 x
0 1 y cos(θ) + z sin(θ)
x y cos(θ) + z sin(θ) x2 + y2 + z2


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In order for A to be orthogonal, we require ATA = I, so we must have:

x = 0, y cos(θ) + z sin(θ) = 0, x2 + y2 + z2 = 1.

Since x = 0, the last condition becomes:

y2 + z2 = 1, and y cos(θ) + z sin(θ) = 0.

This means (y, z) ∈ R2 is a unit vector orthogonal to (cos(θ), sin(θ)), i.e., it must lie along
the vector (− sin(θ), cos(θ)) or its opposite.
So we conclude:

(x, y, z) = (0,− sin(θ), cos(θ)) or (0, sin(θ),− cos(θ)).

■

Exercise 81. Show that an orthogonal matrix as orthonormal rows.

Solution. Let M ∈ Rn×n be an orthogonal matrix. By definition, this means that its
columns are orthonormal, we saw that it is equivalent to M⊤ = M−1, and therefore:

MM⊤ = In.

This implies that M⊤ is also an orthogonal matrix. Therefore, the columns of M⊤ form
an orthonormal basis of Rn.
But the columns of M⊤ are exactly the rows of M . Hence, the rows of M are orthonormal.

■

Exercises

Exercise 82. Let A = USV T be the SVD of A ∈ Rn×m. Let {u1, . . . , un} be the left
singular vectors (columns of U) and {v1, . . . , vm} be the right singular vectors (columns of
V ). Let r ≤ min(n,m) be the number of non-zero singular values of A. Show that we can
write:

A =

r∑
i=1

σiuiv
T
i .

Solution. Let A ∈ Rn×m, and let its singular value decomposition be given by:

A = UΣV ⊤,

where:
- U ∈ Rn×n is an orthogonal matrix whose columns u1, . . . , un are the left singular vectors,
- V ∈ Rm×m is an orthogonal matrix whose columns v1, . . . , vm are the right singular
vectors,
- Σ ∈ Rn×m is a diagonal matrix with nonnegative real numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0
on the diagonal, and zeros elsewhere.
We can express the matrix product A = UΣV ⊤ in the following way:

A =

r∑
i=1

σiuiv
⊤
i .
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To see why this is true, observe that:
- The matrix Σ has the singular values σ1, . . . , σr (with r ≤ min(n,m)) on the diagonal
and zeros elsewhere.
- Therefore, we can write:

Σ =

r∑
i=1

σieif
⊤
i ,

where ei ∈ Rn and fi ∈ Rm are the standard basis vectors, and each σi is in position (i, i).
Now consider the product:

A = UΣV ⊤ = U

(
r∑

i=1

σieif
⊤
i

)
V ⊤ =

r∑
i=1

σi(Uei)(V fi)
⊤.

But Uei = ui and V fi = vi, since ui and vi are the columns of U and V , respectively.
Therefore:

A =

r∑
i=1

σiuiv
⊤
i ,

as desired. ■

Exercise 83. Let A ∈ Rn×m. Show that the rank of A is equal to the number of non-zero
singular values of A.

Solution. Let A ∈ Rn×m and consider its singular value decomposition (SVD):

A = UΣV ⊤,

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices, and Σ ∈ Rn×m is a diagonal
matrix (possibly rectangular) with non-negative real numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0 on
the diagonal, followed by zeros.
Let r be the number of non-zero singular values. Then Σ has exactly r non-zero rows, and
the matrix A can be written as:

A =

r∑
i=1

σiuiv
⊤
i ,

where ui and vi are the i-th columns of U and V , respectively.
Now, consider x ∈ kerA. Then:

Ax =

r∑
i=1

σiui⟨vi, x⟩ = 0.

Since the {ui} are linearly independent and σi > 0, this implies:

⟨vi, x⟩ = 0 for all i = 1, . . . , r.

Therefore, x ∈ span(vr+1, . . . , vm), and so:

kerA = span(vr+1, . . . , vm),

which has dimension m− r. Applying the rank-nullity theorem:

rank(A) = m− dim(kerA) = m− (m− r) = r.

Hence, the rank of A is exactly the number of non-zero singular values. ■
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Exercise 84. Why are ATA and AAT symmetric positive definite?

Solution. Let A ∈ Rm×n. We want to study the matrices ATA ∈ Rn×n and AAT ∈ Rm×m.
We’ll show they are both symmetric and positive semi-definite.
1. Symmetry:
- (ATA)T = AT (AT )T = ATA ⇒ ATA is symmetric.
- (AAT )T = (AT )TAT = AAT ⇒ AAT is symmetric.
2. Positive semi-definiteness:
Let x ∈ Rn. Then:

xTATAx = (Ax)T (Ax) = ∥Ax∥2 ≥ 0.

So ATA is positive semi-definite. Similarly, let y ∈ Rm. Then:

yTAAT y = (AT y)T (AT y) = ∥AT y∥2 ≥ 0,

so AAT is also positive semi-definite. ■

Exercise 85. When are the SVD and the eigendecomposition of the matrix the same?

Solution. The Singular Value Decomposition (SVD) and the eigendecomposition of a ma-
trix are generally distinct decompositions. However, they coincide under specific condi-
tions.
Reminder:
- The SVD of a matrix A ∈ Rn×n is:

A = UΣV T ,

where U, V ∈ Rn×n are orthogonal matrices, and Σ is a diagonal matrix with non-negative
entries (the singular values).
- The eigendecomposition of a matrix A ∈ Rn×n (when it exists) is:

A = QΛQ−1,

where Q is invertible (or orthogonal if A is symmetric) and Λ is diagonal (with eigenvalues
on the diagonal).
When are they the same?
The SVD and the eigendecomposition of a matrix A ∈ Rn×n are the same if and only if
A is symmetric and positive semi-definite.
Why?
1. If A is symmetric, then its eigendecomposition exists:

A = QΛQT ,

with Q orthogonal and Λ real diagonal.
2. If in addition A is positive semi-definite, then all eigenvalues λi ≥ 0. Let Σ =

√
Λ, and

define:
A = QΣΣQT = (QΣ)(Q)T ,

which is an SVD:
A = UΣV T ,

with U = Q, V = Q, and Σ containing the singular values, which coincide with the
eigenvalues in this case.
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Conclusion:
The SVD and eigendecomposition of a real square matrix coincide if and only if the matrix
is symmetric and positive semi-definite. ■

Exercise 86. Derive expression for AAT and ATA in terms of the SVD of A. In terms
of the singular values, when are these matrices each invertible?

Solution. Let A ∈ Rn×m, and let the Singular Value Decomposition (SVD) of A be:

A = UΣV T ,

where:

• U ∈ Rn×n is an orthogonal matrix (its columns are the left singular vectors),

• V ∈ Rm×m is an orthogonal matrix (its columns are the right singular vectors),

• Σ ∈ Rn×m is a rectangular diagonal matrix, with non-negative real numbers
σ1, . . . , σr (the singular values) on the diagonal, where r = rank(A).

1. Expression for AAT :

AAT = (UΣV T )(V ΣTUT ) = UΣΣTUT .

Since ΣΣT ∈ Rn×n is symmetric and diagonal with entries σ2
1 , . . . , σ

2
r , 0, . . . , 0︸ ︷︷ ︸

n−r

, this shows:

AAT = U(ΣΣT )UT .

2. Expression for ATA:

ATA = (V ΣTUT )(UΣV T ) = V ΣTΣV T .

Again, ΣTΣ ∈ Rm×m is diagonal with entries σ2
1 , . . . , σ

2
r , 0, . . . , 0︸ ︷︷ ︸

m−r

, so:

ATA = V (ΣTΣ)V T .

3. When are AAT and ATA invertible?
- AAT ∈ Rn×n is invertible if and only if A has full row rank, i.e., rank(A) = n. This
occurs when all σi > 0 for i = 1, . . . , n and n ≤ m.
- ATA ∈ Rm×m is invertible if and only if A has full column rank, i.e., rank(A) = m. This
occurs when all σi > 0 for i = 1, . . . ,m and m ≤ n.
In both cases, invertibility is equivalent to all the singular values σi being strictly positive.

■

Exercise 87. Show that the rank of a matrix A is equal to the rank of A⊤A and AA⊤.

Solution. Let A ∈ Rn×m. We want to show that

rank(A) = rank(A⊤A) = rank(AA⊤).
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Step 1: Relate ker(A⊤A) and ker(A) Note that

A⊤Ax = 0 ⇐⇒ x⊤A⊤Ax = ∥Ax∥2 = 0 ⇐⇒ Ax = 0.

Therefore,
ker(A⊤A) = ker(A).

Applying the rank-nullity theorem to A⊤A ∈ Rm×m, we get

rank(A⊤A) = m− dim(ker(A⊤A)) = m− dim(ker(A)) = rank(A).

Step 2: Relate ker(AA⊤) and ker(A⊤) Similarly,

AA⊤y = 0 =⇒ y⊤AA⊤y = ∥A⊤y∥2 = 0 =⇒ A⊤y = 0,

which gives
ker(AA⊤) = ker(A⊤).

By the rank-nullity theorem for AA⊤ ∈ Rn×n,

rank(AA⊤) = n− dim(ker(AA⊤)) = n− dim(ker(A⊤)) = rank(A).

Conclusion We conclude that

rank(A) = rank(A⊤A) = rank(AA⊤).

■

Exercise 88. Show that AAT and ATA have the same non-zero eigenvalues.

Solution. Let A ∈ Rn×m. We aim to show that the matrices AA⊤ ∈ Rn×n and A⊤A ∈
Rm×m have the same non-zero eigenvalues (with the same multiplicities).
Assume λ ̸= 0 is an eigenvalue of A⊤A with corresponding eigenvector v ∈ Rm, i.e.

A⊤Av = λv.

Multiplying both sides on the left by A, we get:

AA⊤(Av) = λ(Av).

If Av ̸= 0, this shows that Av is an eigenvector of AA⊤ associated to the same eigenvalue
λ ̸= 0.
Conversely, assume λ ̸= 0 is an eigenvalue of AA⊤ with eigenvector u ∈ Rn, so

AA⊤u = λu.

Multiplying both sides on the left by A⊤, we get:

A⊤A(A⊤u) = λ(A⊤u).

If A⊤u ̸= 0, this shows that A⊤u is an eigenvector of A⊤A with eigenvalue λ.
Finally, observe that both A⊤A and AA⊤ are symmetric and positive semi-definite, and
both have rank equal to rank(A). Thus they have exactly the same number of non-zero
eigenvalues (counted with multiplicity), and we have shown above that these eigenvalues
must be the same.

■
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Exercise 89. In the proof of the SVD we showed that the columns of V (the right singular
vectors) are the eigenvectors of ATA. Show that the columns of U (the left singular vectors)
are the eigenvectors of AAT .

Solution. Let A ∈ Rn×m, and suppose A = UΣV ⊤ is the singular value decomposition
(SVD) of A, where:

• U ∈ Rn×n has orthonormal columns (left singular vectors),

• V ∈ Rm×m has orthonormal columns (right singular vectors),

• Σ ∈ Rn×m is a diagonal matrix with non-negative entries σ1, . . . , σr (singular values),
where r = rank(A).

We now compute:
AA⊤ = (UΣV ⊤)(V Σ⊤U⊤) = UΣΣ⊤U⊤.

Since ΣΣ⊤ is a symmetric, positive semi-definite matrix of size n×n, and U is orthogonal,
it follows that AA⊤ = U(ΣΣ⊤)U⊤ is the eigendecomposition of AA⊤. Therefore, the
columns of U are the eigenvectors of AA⊤, and the eigenvalues are given by the squared
singular values σ2

i .
■

From these two exercises, notice that we have therefore obtained that the singular values
of A are the square roots of the non-zero eigenvalues of AAT and ATA, and the right (left)
singular vectors are the eigenvectors of ATA (AAT ).

Exercise 90. Given a matrix A what parts of the SVD give an orthonormal basis for the
column space of A, the row space of A, and the null space of A.

Solution. Suppose A has rank r, and write

Σ =

[
Σr 0
0 0

]
where Σr = diag(σ1, . . . , σr), σi > 0.

• Column space of A: The first r columns of U , i.e. {u1, . . . , ur}, form an orthonor-
mal basis of Im(A).

• Row space of A: The first r columns of V , i.e. {v1, . . . , vr}, form an orthonormal
basis of the row space Im(A⊤).

• Null space of A: The last m − r columns of V , i.e. {vr+1, . . . , vm}, form an
orthonormal basis of ker(A).

■

Exercise 91. Show that the Frobenius norm of a matrix A ∈ Rn×m, defined as

∥A∥2F =

n∑
i=1

m∑
j=1

A2
ij ,

is equal to the sum of the squared singular values of A.
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Solution. Let A = UΣV ⊤ be the singular value decomposition of A, where

Σ =

[
diag(σ1, . . . , σr) 0

0 0

]
with r = rank(A).
Recall that the Frobenius norm can be expressed as:

∥A∥2F = trace(A⊤A).

Now substitute the SVD of A:

∥A∥2F = trace
(
(UΣV ⊤)⊤(UΣV ⊤)

)
= trace

(
V Σ⊤U⊤UΣV ⊤) .

Since U is orthogonal, U⊤U = I, so:

∥A∥2F = trace(V Σ⊤ΣV ⊤).

Using the cyclic property of the trace:

∥A∥2F = trace(Σ⊤ΣV ⊤V ) = trace(Σ⊤Σ),

because V is orthogonal, so V ⊤V = I.
Since Σ is diagonal (except for zero blocks), Σ⊤Σ is diagonal with entries σ2

i , hence

∥A∥2F =

r∑
i=1

σ2
i .

This shows explicitly that the Frobenius norm is invariant under multiplication by orthog-
onal matrices, and that it equals the sum of the squares of the singular values. ■
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8.4 Neuro Q6: SVD & Deep Linear Networks

Motivation

Neural networks, either Chat-GPT or your brain, are hard to understand. They do many surpris-
ing things, and in general are very hard to analyse. A good route to understanding is proposing
simple models and seeing how many of the observed phenomena can be seen in these understand-
able models.

We are going to analyse such a simple model, known as a deep linear network, introduced by
our very own Andrew Saxe (Saxe et al. 2013). Despite their simplicity, it turns out a variety of
surprises will pop out that seem to match the behaviour of both neural networks and animals.

In this question we will derive the learning dynamics of deep linear networks. In the process we
will model cognitive findings, in particular the step-like emergence of concepts. When trying to
understand SVD you rarely feel 50% good, then 49%, etc. Rather, you know nothing, you know
a little bit, then it all clicks, and you basically understand the whole thing in one go.

Model Setup

Standard feedforward neural networks swallow an input vector and iteratively apply a transfor-
mation. This transformation does two things, (i) it projects the incoming vector through an
affine transform, then (ii) it applies an element-wise nonlinearity:

f(x) = Wnϕ(Wn−1ϕ(...ϕ(W2ϕ(W1x+ b1) + b2)...+ bn−1) + bn (8.1)

An elementwise nonlinearity just means you take a function, ϕ̃ : R → R, e.g. the famous ReLU
function, ReLU(x) = max(0, x), and apply it to a vector by applying it individually to each
element of a vector, ϕ : Rn → Rn, = ϕ(x), yi = ϕ̃(xi). We’re going to simplify this by removing
the bias vectors, b, and the nonlinearities:

f(x) = WnWn−1...W2W1x (8.2)

In fact, it turns out that analysing a two layer version of this will show most of the intracies
required, generalising again back to many layers is not that hard, therefore we analyse the
following model.

f(x) = W2W1x (8.3)

So, neural networks are function approximators. They are given training data (example input-
output pairs) and they have to change their parameters so that the function they embody (f(x))
matches the training data. This is just regression. The way this is usually done is through
gradient descent: you measure the discrepancy between the true output and the neural network’s
guess, and you take the gradient with respect to the parameters. You then change the parameters
to follow the gradient, decreasing the loss. (This should be a refresher, ask if you’ve never heard
of these ideas)

We therefore assume access to a large dataset, {xi, yi}Ni=1, that we will use to train the weight
matrices W1,W2.
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Question

1. Many people are surprised that deep linear networks are interesting (including initially
Andrew), one reason for this is the nature of the input output mapping. What type of
function does a deep linear network implement?

The training procedure is standard, for each datapoint the network’s estimated output is calcu-
lated:

ŷi = W2W1x (8.4)

Then the error is measured, the L2 distance between true and predicted output:

L(W1,W2) =
1

2
||yi − ŷi||22 (8.5)

Then the parameters are updated by following the gradient some distance:

∆W1 = −λ
∂

∂W1
L(W1,W2) (8.6)

∆W2 = −λ
∂

∂W2
L(W1,W2) (8.7)

2. Denoting hi = W1xi, the hidden layer activities when input xi is provided, derive the
following expressions for the weight update from equations 8.6 and 8.7:

∆iW1 = λWT
2 (yi − ŷi)x

T
i (8.8)

∆iW2 = λ(yi − ŷi)h
T
i (8.9)

3. This was the update if one datapoint was provided. We will assume that the learning rate,
λ, is very small so we can average the update equations over P datapoints where P is very
large and approximately average over the distribution of the data. Show:

∆W1 =

P∑
i=1

∆iW1 ≈ PEi[∆iW1] = λPWT
2 (Σxy −W2W1Σx) (8.10)

∆W2 =

P∑
i=1

∆iW2 ≈ PEi[∆iW2] = λP (Σxy −W2W1Σx)W
T
1 (8.11)

Where we have denoted Σyx = E[yxT ], and Σx = E[xxT ].

We take the continuum limit of this to turn these discrete update equations into continuous time
differential equations, namely:

τ
d

dt
W1 = WT

2 (Σxy −W2W1Σx) (8.12)

τ
d

dt
W2 = (Σxy −W2W1Σx)W

T
1 (8.13)

Where τ = 1
Pλ .
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4. Assume Σx = I, and write the SVD of the input-output correlation as: Σxy = USV T .
Rotate the bases to write the weight matrices in these bases, U and V :

W1 = RW̄1V
T (8.14)

W2 = UW̄2R
T (8.15)

Where R is some arbitrary orthogonal matrix. Show that the dynamics of these rotated
matrices are nice and simple (hence the rotation):

τ
d

dt
W̄1 = W̄T

2 (S − W̄2W̄1) (8.16)

τ
d

dt
W̄2 = (S − W̄2W̄1)W̄

T
1 (8.17)

5. These equations are hard to solve because they describe the coupled dynamics of two
matrices, however we actually get lucky. Explain why if the rotated weight matrices are
diagonal at the beginning of training they will remain diagonal.

6. Empirically, if the weights are initialised to very small values, then the off-diagonal elements
actually decay to zero. (I don’t think this is currently theoretically well understood) This
means we can just study the behaviour of all the diagonal elements, and it turns out those
decouple, so we can understand their simple dynamics in isolation!

Calling the diagonal elements cα = W̄1,αα and dα = W2,αα show that their dynamics
decouple, i.e. show that:

τ
d

dt
cα = dα(sα − cαdα) (8.18)

τ
d

dt
dα = cα(sα − cαdα) (8.19)

Where sα is the αth diagonal element of S.

7. It turns out that if you initialise the weights to be very small (or if you add a term to
the loss that penalises the L2 norm of the weight matrices) then the solution the neural
network chooses is balanced, meaning cα = dα throughout training!

We can then track the dynamics of just one variable per mode (i.e. per α), aα = cαdα.
Show the dyanmics are:

τ
d

dt
aα = 2aα(sα − aα) (8.20)

8. This is a differential equation which you might be able to solve. Denote the initial value
of aα as a0α. Show that (it requires doing a funky integral, google if you are struggling):

aα(t) =
sαe

2sαt
τ

e
2sαt

τ − 1 + sα
a0
α

(8.21)

9. Plot this curve on your favourite plotting programme, and play with the behaviour of the
curve as you vary the singular value sα and other things.
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Great, we’ve derived the key dynamics! And look! You should have found that the dynamics
are step-like! Each singular value is learnt as its own concept, and how quickly it is learnt is
determined by the size of the singular value, which roughly encodes how important this ‘concept’
was for understanding the data.
Let’s emerge from the hole we’ve fallen down, and recover the solution to the initial problem.
Make the matrix A(t) which is diagonal with diagonal elements aα(t). Then A(t) = W̄2W̄1(t).
We invert the initial change of basis to finally uncover that:

W2W1(t) = UW̄2W̄1(t)V
T = UA(t)V T (8.22)

Let’s recall this solution required:

• Very slow learning rate, λ << 1

• Balanced solution, cα = dα

• Decoupled dynamics, offdiagonal elements decay to 0

The last two conditions are generally achieved if the weights are initialised very small.
See Saxe et al. 2019 for some of the fun cognitive phenomena that pop out of this model. We
will just highlight one here. Neural networks and animals are observed to go through step-like
learning transitions.

10. Repeat the same analysis as above for a one layer linear neural network:

f(x) = Wx (8.23)

(don’t worry it’s similar but much simpler).

Show that the dynamics is completely described by a sum of exponentially decaying modes.

This last question asks you to show that shallow networks never show step-like transitions, they
exponentially decay from one state to another. Conversely, the deep dynamics you derived can
show step-like changes, as in the figure below. Ain’t that funky! Nonlinear neural networks often
shown similar phenomena.

Figure 8.3: Mean squared error of the loss shows phase like transitions.
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Short Note: Determinants

Depending on the basis you’re working in a matrix can look very different, figure 9.1. Yet,
somehow, in all bases (cases), there are a few behaviours that seem to be the same. This lecture,
we’re going to discover one such behaviour for square matrices: in all bases, a square linear map
expands the space by the same amount, and this amount is called the determinant. You can see
this illustrated intuitively in figure 9.1. It is easily an calculated, intepretable, basis-independent
function of a linear map that pops up surprisingly often.

Figure 9.1: The matrix looks very different in these different bases. But take the basis vectors
and map them through M , they will arrive at the blue arrows, the columns of M . The basis
vectors define a unit square, the amount this square is expanded (the area of the blue shape) is
the same in all bases!

To describe this object we’re going to need a slightly weird definition of what we mean by volume,
that is close but not the same as the normal daily-life notion. Our notion of volume will have a
sign, i.e. it can be negative, and the sign will encode the orientation: e.g. two shapes of the same
size but swapped orientation will have opposite signed volume, though their intuitive volume will
be the same, figure. This quantity turns out to be the most natural way to characterise matrix
volume expansions. One place where it will pop up is finding the eigenvalues of a network.
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9.1 Determinant a Natural Expression of Volume

The determinant will be the unique function that satisfies these properties:

Theorem 5 (Existence and unicity of the determinant). Let B be basis of Rn. Then there
exists a unique map from Rn×n (the space of n, n dimensional vectors) to R called detB
such that:

• detB is n−linear - it is a linear function of each of the n input vectors;

• detB is alternating, meaning that it is zero if two of the input vectors are the same,
the determinant is zero;

• detB(B) = 1.

Proof. This theorem is admitted.

We’ve described this as a function of n, n-dimensional vectors, measuring the volume traced out
by these vectors. Often you’ll see the determinant of a matrix, which

Informal Discussion

The determinant is supposed to embody the notion of volume contained within the interior

of a basis, e.g., the volume of the set

{
n∑

i=1

λixi : λi ∈ [0, 1]

}
and generalize it to arbitrary

dimensions. It is an astonishing fact that there exists only one notion of volume that verify
the two very basic desiderata for volume:

• (multi-)linearity: scaling a side by λ scales the volume by λ

• being alternated: if two sides are pointing in the same direction, then the volume is
flat.

Figure 9.2: Two natural properties, that it scales linearly as you scale one side, and it is
zero is the sides are co-linear, is enough to uniquely define volume!

Two remaining comments are that the last degeneracy, fixed by setting detB(B) = 1,
simply expresses the fact that we need to choose our units for the volume, once that is
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done, the volume is unique! There is a different notion of volume if we work in metres, or
in centimetres.
Finally, our linearity constraint is what makes this signed volume different to volume.
If you multiply a vector by −1 the volume doesn’t change, but the signed volume does.
Since we care a lot about linearity, we’ll stick with signed volume. It also pops up in some
relatively surprising places. Often you’ll see the absolute value of the determinant being
used, this is more like the traditional notion of the volume.

A Series of Familiarizing Exercises

We’ll now step through a series of examples. In each you have to use the properties of the
determinant to show that it abides by the natural notions of volume. For all of them det
should be taken to be with respect to the canonical basis.

Exercise 92 (Volume of a Cuboid). Start in R3, let a1, a2, a3 ∈ R, show:

det

a10
0

 ,

 0
a2
0

 ,

 0
0
a3

 = a1a2a3

Where det is taken to be the determinant in the canonical basis of R3. Hence, it accords
with the intuitive notion of volume.

Exercise 93 (Volume of Flat Shape). Let {ai}ni=1 be a set of linearly dependent vectors
in Rn. Show that det(a1, .., an) = 0.

Exercise 94 (Volume unchanged by adding a column). Now let {ai}ni=1 be a set of vectors
in Rn. Show that if you add a multiple of one vector to another, it does not change the
determinant.

Exercise 95 (Volume of Sheared-Cuboid). Now let {ai}ni=1 be a set of vectors in Rn with
the property that only the top i components of the ith vector are non-zero. Show that the
determinant is the product of the diagonal elements:

det(a1, ..., an) = (a1)1...(an)n

This question is quite hard, try showing it in 2D using the previous exercise. Then try
generalising. It also has a nice geometric intuition.

Exercise 96 (General Det in R2). Show that:

det(

[
a
b

]
,

[
c
d

]
) = ad− bc

There are 3 quite different ways to do this.

This last exercise is a useful property. Another one is the following, which we quote without
proof:
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Determinant of Product of Matrices

The determinant of a product of two square matrices is the product of the determinants
of the matrix:

det(AB) = det(A) det(B) (9.1)

9.2 Finding eigenvalues and establishing diagonalizability

In the following, we investigate further how one can determine whether a matrix is diagonalizable,
and how to find its eigenvalues. We first characterize eigenvalues of a matrix through the lens of
(non-)injectivity and determinants. This is one of the major uses of the determinant.

Eigenvalues through non-injectivity

If λ is an eigenvector of u, then since there exists x such that u(x) = λx, we have that

(u− λId)(x) = 0

e.g the function u− λidE is not injective.

Consequently, we can use the machinery of determinants to find eigenvalues, to characterize an
eigenvalue:

Criterion for non-injectivity

Proposition 44. Let u ∈ L(Rn). Then we have:

det(u) = 0 ⇐⇒ u is not injective

Worked Example

Let’s find the eigenvalues of the following matrix using this approach M =

[
2 1
1 2

]
. We

can do this by calculating the following determinant:

det(M−λI) = det

[
2− λ 1
1 2− λ

]
= (2−λ)2−1 = λ2−4λ+3 = (λ−3)(λ−1) = 0 (9.2)

Hence the eigenvalues are 1 and 3.

If we can solve this equation to find n distinct eigenvalues for an n dimensional square matrix,
then it must be diagonalisable.
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Projections and Principal
Component Analysis

10.1 Projections

10.1.1 Projection with complementary subspaces

Projection

Definition 47. Let F and G be two subspaces of Rn that are complementary: Rn = F⊕G.
∀x ∈ Rn, there is a unique pair (xF , xG) ∈ F ×G such that x = xF + xG. The projection
of a vector x ∈ Rn onto F along G, pF,G, is defined as pF,G(x) = xF .

Casually Explained

This is a very natural definition. Decomposing a space into two subspaces, the projection
finds the component of any vector in one of those subspaces. Physically, you can think of
it as mapping a vector to its shadow on F when illuminated by light aligned with G.
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Figure 10.1: Under illumination by light aligned with G, the shadow of each vector x in
the subspace F is the projection of x onto F , xF .

Projections are super important and happen everywhere! In physics (measurement in
quantum mechanics), in statistics (PCA, QR decomposition), and in general in the theory
of Euclidean and Hilbert spaces.

Projection

Proposition 45. Let F and G be complementary subspaces of Rn, i.e., Rn = F ⊕G, and
let pF,G : Rn → F be the projection onto F along G as defined in Definition 47. Then
pF,G is a linear map.

Projection

Proof. Let x, y ∈ Rn, and let λ ∈ R. Since Rn = F ⊕G, we can uniquely decompose each
vector as

x = xF + xG, y = yF + yG,

with xF , yF ∈ F and xG, yG ∈ G. Then

x+ y = (xF + yF ) + (xG + yG),

where xF + yF ∈ F and xG + yG ∈ G, so this is the unique decomposition of x+ y along
F ⊕G. Therefore,

pF,G(x+ y) = xF + yF = pF,G(x) + pF,G(y).

Similarly, for scalar multiplication, we have

λx = λ(xF + xG) = (λxF ) + (λxG),

with λxF ∈ F , λxG ∈ G, so this is the unique decomposition of λx, and hence

pF,G(λx) = λxF = λpF,G(x).

Thus, pF,G preserves addition and scalar multiplication, and is therefore linear.
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10.1.2 Orthogonal Projections

Projections require you to specify the two subspaces you are breaking the space into, pF in
definition 47 changes if you change G. Let’s say you don’t really care about G, really what
you’re interested in is F , then a very natural choice is to make G = F⊥. This is the choice the
orthogonal projection takes, and we will see it has nice properties that justify its naturalness.
First we need to introduce the orthogonal complement of a subspace.

Orthogonal subspaces

Definition 48. Let F ⊂ Rn be a vector subspace of Rn. Then the space:

{y ∈ Rn : ⟨x, y⟩ = 0 ∀x ∈ F}

is called the orthogonal complement of F , and is denoted by F⊥.

Proposition 46. Let F ⊂ Rn be a vector subspace of Rn. Then

• F⊥ is a vector subspace of Rn

• F and F⊥ are in direct sum, and F ⊕ F⊥ = Rn.

• (F⊥)⊥ = F

Proof.

1. the proof for the first point is left as an exercise.

2. admitted.

3. the last point is left as an exercise.

Orthogonal Projection

Definition 49. Let F ⊂ Rn be a subspace of Rn, and F⊥ be the orthogonal complement
of F . For x ∈ Rn, x = xF + x⊥, xF ∈ F , x⊥ ∈ F⊥, we define the orthogonal projection
onto F , or just projection onto F as pF (x) = xF .

Projection onto Orthogonal Basis

Proposition 47. Let F ⊂ Rn be a subspace of Rn of dimension p. Let {u1, ..., up} be an
orthonormal basis of F . Then the projection of x onto F is given by:

pF (x) =

P∑
i=1

⟨x, ui⟩ui
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Proof

Proof. Since {u1, . . . , up} is an orthonormal basis of F , any vector y ∈ F can be uniquely
written as y =

∑p
i=1 αiui. We now decompose x ∈ Rn as:

x = y + z, with y ∈ F and z ∈ F⊥.

Then y = pF (x) by definition of orthogonal projection. We determine the coefficients αi

using orthonormality:

⟨x, ui⟩ = ⟨y + z, ui⟩ = ⟨y, ui⟩+ ⟨z, ui⟩ = αi + 0 = αi,

since z ∈ F⊥ and ui ∈ F . Therefore,

pF (x) = y =

p∑
i=1

⟨x, ui⟩ui.

Another view of orthogonal projections in vector spaces is as finding the closest point within a
subspace to the original vector.

Proposition 48. Let F be a subspace of Rn, and let pF denotes the orthogonal projection
on F . We have,

pF : Rn → Rn

x 7→ argmin
y∈F

||y − x||.

Furthermore, pF (x) is the unique minimizer of ||y − x|| on F .

Proof. Fix x ∈ Rn and let x = pF (x) + xF⊥ be its orthogonal decomposition in F ⊕ F⊥.
Then for all y ∈ F ,

∥x− y∥2 = ∥(pF (x)− y) + xF⊥∥2 = ∥pF (x)− y∥2 + ∥xF⊥∥2 ≥ ∥xF⊥∥2.

Therefore, y = pF (x) is the unique minimizer of the minimization of ||y − x|| on F .

10.2 Principal Component Analysis - PCA

Principal Component Analysis is a workhorse of modern data analysis and particularly neuro-
science. It is an application of all the ideas that we have covered so far.

Casually Explained

One motivation for PCA is the prevalence of high-dimensional data, which is very hard
to interpret. A reasonable way to try to proceed is to find some subspace in which the
phenomena of interest are happening, and to work in this lower-dimensional subspace.
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Following this motivation, given a dataset {x1, ..., xn} where xi ∈ Rp, PCA finds the vector
subspace of dimensions d ≤ p such that the projection of {x1, ..., xn} onto this subspace
has maximal variance.

PCA Problem Formulation

• Given a dataset {x1, ..., xn} of vectors in Rp, let x̄ = 1
n

∑n
i=1 xi be their mean. We

measure the variance of this set as:

V({x1, ..., xn}) =
1

n

n∑
i=1

||xi − x̄||2

• Let F ⊆ Rn be a subspace of dimension d. PCA aims to find the F that maximises
the projected variance, i.e.:

argmax
F⊂Rn,dim(F )=d

1

n

n∑
i=1

||pF (xi)− pF (x̄)||2

• Optimising over subspaces sounds hard, luckily we can map this to optimisation
over vectors using a basis, i.e. we map this problem into a constrained Euclidean
optimisation.

As discussed earlier to any F ⊆ Rp of dimension d we can associate an orthonormal
family of vectors {e1, ..., ed} such that span({e1, ..., ed}) = F . Then, ∀x ∈ Rp,

pF (x) =
∑d

i=1⟨x, ei⟩ei. Therefore we can rewrite our PCA optimisation problem as:

argmax
{e1,...,ed} ONF

1

n

n∑
i=1

∥∥∥∥∥∥
d∑

j=1

⟨xi, ej⟩ej −
d∑

j=1

⟨x̄, ej⟩ej

∥∥∥∥∥∥
2

Where we have used the terminology ONF to denote an orthonormal family: a set
of vectors {e1, ..., ed} such that ⟨ei, ej⟩ = δij .

• By bilinearity of the inner product, and orthonormality of the basis we can develop
this:

argmax
{e1,...,ed},⟨ei,ej⟩=δij

1

n

n∑
i=1

∥∥∥∥∥∥
d∑

j=1

⟨xi − x̄, ej⟩ej

∥∥∥∥∥∥
2

=
1

n

n∑
i=1

d∑
j=1

⟨xi − x̄, ej⟩2

• We are going to rewrite this by creating the matrix X ∈ Rp×n that is formed from
stacking the vectors xi along each of the columns. We also denote the p× n matrix
made by stacking n columns of the mean x̄ as X̄. With these, we can rewrite the
previous expression as:

argmax
{e1,...,ed},⟨ei,ej⟩=δij

1

n

d∑
j=1

⟨(X − X̄)⊤ej , (X − X̄)⊤ej⟩2 =
1

n

d∑
j=1

e⊤j (X − X̄)(X − X̄)⊤ej

=

d∑
j=1

e⊤j CXej
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Where we have defined the covariance matrix as is typical, CX = 1
n (X−X̄)(X−X̄)⊤.

Why is this the natural definition, well:

(CX)ij =
1

n

n∑
k=1

(Xik − X̄ik)(Xjk − X̄jk)

=
1

n

n∑
k=1

((xk)i − x̄i)((xk)j − x̄j)

which is the covariance between the dimension i and the dimension j across the n vectors.

This has been a very interesting rewrite, as we have now arrived at a matrix with very convenient
properties.

Lemma

CX is a symmetric matrix with nonnegative eigenvalues.

Proof

Proof. Exercise.

This result takes us to our final PCA theorem, which is a cracking result that should make you
deeply happy:

PCA performs covariance eigendecomposition

Theorem 6. The PCA problem:

argmax
{e1,...,ed},⟨ei,ej⟩=δij

d∑
j=1

e⊤j CXej

attains its maximum for {e1, ..., ed} = {f1, ..., fd} when {f1, ..., fd} are the eigenvectors of
CX associated with the d largest eigenvalues.
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Figure 10.2: Data is normally distributed in 3D with mean µ and covariance Σ. Equally likely
points under this distribution form an ellipsoid, the axes of this ellipsoid are the eigenvectors of
Σ and their size is the associated eigenvalues. 2-dimensional PCA finds the plane onto which
the projected data has maximal variance, intuitively, it makes sense that this is the first two
eigenvectors of the distribution, given that they form the two largest axes of the ellipse.

Proof

Proof by iterative maximization. Let CX ∈ Rp×p be the covariance matrix of a centered
dataset X, i.e., CX = 1

nX
⊤X. Since CX is symmetric and positive semi-definite, it admits

an orthonormal basis of eigenvectors {f1, . . . , fp}, with associated eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λp ≥ 0.
We aim to solve the PCA optimization problem:

max
e1,...,ed∈Rp

orthonormal

d∑
j=1

⟨ej , CXej⟩

We proceed by successively optimizing each vector ej under orthogonality constraints with
respect to the previous ones.
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Step 1: Optimize e1 We want to find:

e∗1 = arg max
∥e1∥=1

⟨e1, CXe1⟩

Decomposing e1 in the eigenbasis:

e1 =

p∑
i=1

αifi, with

p∑
i=1

α2
i = 1

Then,

⟨e1, CXe1⟩ =
p∑

i=1

λiα
2
i ≤ λ1

Equality is achieved when α1 = 1, i.e., e1 = f1. So the optimal first direction is:

e∗1 = f1

Step 2: Optimize e2 ⊥ e1 Now, we search for:

e∗2 = arg max
∥e2∥=1

⟨e2,e∗1⟩=0

⟨e2, CXe2⟩

Since e∗1 = f1, we restrict our search to the subspace orthogonal to f1, spanned by
{f2, . . . , fp}. The same reasoning as in Step 1 gives:

⟨e2, CXe2⟩ =
p∑

i=2

λiα
2
i ≤ λ2

with equality if e2 = f2, hence:
e∗2 = f2

General Step j = 1, . . . , d At step j, assume we have already found e∗1 = f1, . . . , e
∗
j−1 =

fj−1. We now look for:
e∗j = arg max

∥ej∥=1
⟨ej ,fi⟩=0, i<j

⟨ej , CXej⟩

We restrict our search to the subspace orthogonal to Span(f1, . . . , fj−1), i.e., spanned by
{fj , . . . , fp}. The same argument applies:

⟨ej , CXej⟩ =
p∑

i=j

λiα
2
i ≤ λj

with equality if ej = fj . So the optimal choice is:

e∗j = fj

Conclusion: The orthonormal family {e∗1, . . . , e∗d} = {f1, . . . , fd} maximizes the PCA
objective:

d∑
j=1

⟨e∗j , CXe∗j ⟩ =
d∑

j=1

λj

This is the maximum total variance that can be captured by projecting onto a d-
dimensional subspace. Therefore, the top d eigenvectors of the covariance matrix form
the optimal principal directions.
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10.3 Exercise Sheet 10: Projections and PCA

Important Exercises!

Exercise 97. F and G are complementary subspaces of Rn, pF,G is the projection onto
F along G. Show that Im(pF,G) = F , and ker(pF,G) = G.

Solution. Let x ∈ Rn. Since Rn = F ⊕G, there exists a unique decomposition x = f + g
with f ∈ F , g ∈ G. By definition, pF,G(x) = f .
Image: For any x ∈ Rn, we have pF,G(x) = f ∈ F , so Im(pF,G) ⊆ F . Conversely, for
any f ∈ F , write f = f + 0 ∈ F + G, and so pF,G(f) = f . Hence, F ⊆ Im(pF ), and we
conclude:

Im(pF,G) = F.

Kernel: Let x ∈ ker(pF,G). Then pF,G(x) = 0, so f = 0, and x = g ∈ G, hence
ker(pF,G) ⊆ G. Conversely, for any g ∈ G, write g = 0 + g, then pF,G(g) = 0, so
g ∈ ker(pF,G). Therefore,

ker(pF,G) = G.

■

Exercise 98. Show that any projection, u : Rn → Rn, satisfy u ◦ u = u.

Exercise 99. Show that any linear map, u : Rn → Rn, for which u◦u = u is a projection
onto Im(u) along ker(u)

Solution. Let u : Rn → Rn be a linear map such that u ◦ u = u (such a map is called
idempotent). We claim that u is the projection onto Im(u) along ker(u). To prove this,
we show that Im(u) and ker(u) are complementary subspaces of Rn by showing that every
vector x ∈ Rn can be uniquely written as

x = u(x) + (x− u(x)),

where u(x) ∈ Im(u) and x− u(x) ∈ ker(u).
1. u(x) ∈ Im(u) by definition.
2. We check that x− u(x) ∈ ker(u):

u(x− u(x)) = u(x)− u(u(x)) = u(x)− u(x) = 0,

so x− u(x) ∈ ker(u).
3. This decomposition is unique: if x = y + z with y ∈ Im(u) and z ∈ ker(u), then
applying u gives

u(x) = u(y + z) = u(y) + u(z) = y + 0 = y,

so y = u(x) and z = x− u(x).
Therefore, Rn = Im(u)⊕ker(u), and u acts as the projection onto Im(u) along ker(u). ■

Exercise 100. Show that F⊥ is a vector subspace of Rn and (F⊥)⊥ = F .
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Exercise

Exercise 101. Show that u : Rn → Rn such that u(x) = x− ⟨a, x⟩a with a ∈ Rn, ∥a∥ = 1
is a projection. Show it is an orthogonal projection. What is the corresponding subspace
(that is being projected onto)? Hint: use the result of the previous exercise.

Solution. 1. u is a projection:
We compute u(u(x)):

u(u(x)) = u (x− ⟨a, x⟩a) = (x− ⟨a, x⟩a)− ⟨a, x− ⟨a, x⟩a⟩ a.

We expand the inner product:

⟨a, x− ⟨a, x⟩a⟩ = ⟨a, x⟩ − ⟨a, x⟩⟨a, a⟩ = ⟨a, x⟩(1− ∥a∥2) = 0.

So:
u(u(x)) = x− ⟨a, x⟩a = u(x),

so u is a projection by the result of the previous exercise.
2. u is an orthogonal projection:
To show that u is orthogonal we show that Ker(u) and Im(u) are orthogonal to each other.
That is, for all x ∈ Rn and all y ∈ Ker(u), we have ⟨u(x), y⟩ = 0. Note that y ∈ Ker(u)
implies

y = ⟨a, y⟩a ∈ span(a),

Furthermore,
u(x) = x− ⟨a, x⟩a ∈ {a}⊥,

since
⟨x− ⟨a, x⟩a, a⟩ = ⟨a, x⟩ − ⟨a, x⟩∥a∥2 = 0,

using ∥a∥ = 1. Thus u(x) ∈ {a}⊥, and y ∈ span(a), implying ⟨u(x), y⟩ = 0.
3. Subspace onto which u projects:
We conclude that u is the orthogonal projection onto the hyperplane:

Im(u) = {a}⊥ = {x ∈ Rn | ⟨x, a⟩ = 0},

i.e., the subspace orthogonal to the vector a. ■

Exercise 102. Let F ⊂ Rn be a subspace of Rn, and pF,G the (not necessarily orthogonal)
projection onto F along some subspace, G, that is complementary with F . Show that pF,G

being orthogonal is equivalent to ||pF,G(x)∥ ≤ ||x||, ∀x ∈ Rn.

Solution. (⇒) If pF,G is orthogonal, then ∥pF,G(x)∥ ≤ ∥x∥:
If pF,G is the orthogonal projection, then for each x ∈ Rn, we have the decomposition
x = f + g with f ∈ F , g ∈ F⊥, and pF,G(x) = f . Since f ⊥ g, we have:

∥x∥2 = ∥f + g∥2 = ∥f∥2 + ∥g∥2 ≥ ∥f∥2 = ∥pF,G(x)∥2.

Taking square roots yields ∥pF,G(x)∥ ≤ ∥x∥, as required.
(⇐) If ∥pF,G(x)∥ ≤ ∥x∥ for all x, then pF,G is orthogonal:
Assume {f1, . . . , fp} is an orthonormal basis of F .
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Suppose the projection pF is not orthogonal. Then, by definition, the subspace G along
which we project is not the orthogonal complement of F . Hence, there exists a vector
x ∈ G and some fk ∈ F such that

⟨x, fk⟩ ≠ 0.

Let fk be one such basis vector of F , and consider the vector

y = fk + λx,

for some scalar λ ∈ R. Since pF projects onto F along G, the projection of y is

pF (y) = fk,

because x ∈ G. Now, compute the norm squared:

∥y∥2 = ∥fk + λx∥2 = ∥fk∥2 + 2λ⟨fk, x⟩+ λ2∥x∥2 = 1 + 2λ⟨fk, x⟩+ λ2∥x∥2,

using that fk is unit norm. Because ⟨fk, x⟩ ≠ 0, we can choose λ with the opposite sign
to ⟨fk, x⟩ and sufficiently large magnitude such that

∥y∥2 < 1,

meaning
∥y∥ < ∥pF (y)∥.

This contradicts the assumption that

∥pF (y)∥ ≤ ∥y∥ for all y.

Therefore, if the norm inequality

∥pF (x)∥ ≤ ∥x∥ ∀x

holds, then necessarily
⟨x, fi⟩ = 0 ∀x ∈ G,∀fi ∈ F,

which means
G = F⊥,

and the projection pF is orthogonal. ■

Exercise: PCA

Exercise 103. Let A ∈ L(Rn) be a symmetric matrix with eigenvalues {λ1, . . . , λn}. In
Exercise 73 we showed that λi ≥ 0 for all i = 1, . . . , n implies that A is positive semi-
definite (if you have not done this exercise, now is a good time). Show the reverse: if A
is positive semi-definite, then λi ≥ 0 for all i = 1, . . . , n.

Exercise 104. Show that CX is a symmetric matrix. Use the previous exercise to show
that CX only admits nonnegative eigenvalues.
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Exercise 105. Let {u1, . . . , ud} be a set of orthogonal vectors in Rn, show that:∥∥∥∥∥
d∑

i=1

ui

∥∥∥∥∥
2

=

d∑
i=1

∥ui∥2.

If {u1, . . . , ud} are orthonormal, what does the sum reduce to?

Exercise 106. Load up Neural Code.npy . Hidden in there is a message that a set of
neurons are trying to send you. Use PCA to find this message.
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10.4 Neuro Q7: PCA & Synaptic Learning Rules

The brain is a consummate learner; how is it that this mush of tissue is able to meaningfully
adapt to changes in the world around it? Seminal work has discovered that one biochemical
basis of learning is changes in the strength of synapses between neurons. You’re all familiar with
how synapses work: the pre-synaptic neuron emits a spike, this triggers a chemical cascade to
cross the synapse, which in turn triggers a voltage change in the postsynaptic neuron. Biology
can exploit this to learn. Through changing many detailed features of the synapse, the same
presynaptic spike can cause a larger or smaller effect on the postsynaptic neuron. Following
a common approach, we will wrap all of this synpatic gobbledegook into the idea of synaptic
weight, a single number that stands in for the strength of a connection between neurons, and
changing this will be our model of learning. Let’s think about a simple neuron with firing rate
yt ∈ R connected to a sensory population with firing rates xt ∈ RN , via weight vector w ∈ RN :

yt = wT
t xt (10.1)

xt represents the firing of the input neurons at time t, and wt represents the synaptic weights.
When you’re born your neurons don’t know how to arrange themselves (even if you’re a fly,
which you’re not), so each of these synpatic weights needs to change to make the system as a
whole do something interesting. A classic approach was suggested by Donald Hebb in the 40s: if
two neurons are co-firing a lot they should be connected (“Fire together, wire together!”) Let’s
formalise that in our model:

∆wt = ηxtyt (10.2)

i.e. the change in a synaptic weight at time t is equal to a learning rate, η, times by the product
of pre and post-synaptic firing rates. This rule says that if two neurons activate together, they
should become more connected!

1. Assume that η is very small. This means that before the weights change very much you
will have likely seen many different input-output pairs (xt, yt). Rather than computing
the weight change for a particular stream of pairs, you can take the average over the
distribution. Further, assume the input data are mean zero. Show that, on average,
Hebbian weight updates are given by:

⟨∆wt⟩ = ηCxxwt (10.3)

Where Cxx is the input data covariance matrix.

2. You know a lot about the eigenstructure of covariance matrices. Use this to argue that
Hebb’s rule is actually a bad rule as it will lead weights to do uninteresting things, in
particular, exploding.

3. Despite this, what interesting subspace will the weight vector increasingly lie in as it follows
Hebb’s rule for a long time?

Okay, so Hebb’s rule is out. Thankfully a chap called Oja had a think about this and came up
with a better rule. He proposed:

∆wt = η(xtyt − y2twt) (10.4)
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You can see the first term is just Hebb’s rule, but clever old Oja added a second term. This
second term is going to stop the Hebbian bit from exploding, as you might already be able to
guess from its form (it shrinks you along the current weight vector - good for stability!). It also
obeys the key tenet of synaptic learning rules - locality! A synapse is a physical object, a mass
of chemicals somewhere in your brain. It only has information about what is happening nearby,
i.e. what the presynaptic neuron is doing, what the postsynaptic neuron is doing, and what
happening within the synapse. You can’t ask a synapse in your visual cortex to change weights
according to a rule that depends on the synapses in your cerebellum. (Meditate and justify to
yourself that Oja’s rule is indeed local)

4. Do the averaging over datapoints again and show that the averaged learning rule can be
written:

∆wt = η(Cxxwt − (wT
t Cxxwt)wt) (10.5)

5. First lets show this solves exploding weight problem. Study the behaviour of ||wt+1||2 −
||wt||2. Since the learning rate is low only consider terms up to order η (i.e. because η is
so small treat all the terms multiplied by η2, η3 etc. as 0). Show that the dynamics cause
the length of the weight vector to converge to 1.

6. Study the dynamics of the components of w in the eigenbasis. If all the eigenvalues of
Cxx are distinct show that only eigenvectors are fixed points under these dynamics. (What
happens if Cxx has repeated eigenvalues?)

Wow, this is pretty cool, these random neurons are extracting principal components! But which
principal component...?
You showed that all the eigenvectors were fixed points of the dynamics, i.e. if you start at an
eigenvector you will stay there. Now what happens if you are perturbed slightly from one of
these eigenvectors? Does the dynamics push you back to where you started (called a stable fixed
point) or does it push you away (called unstable). The best analogy here is something like a
freely swinging pendulum. This has two fixed points: when the pendulum is pointing straight up,
or straight down. In either situation the forces balance, and it is a fixed point of the dynamics.
But, if you perturb slightly from these two fixed points, very different things occur. For obvious
reasons, we only really care about the stable fixed points, the system will never settle on the
unstable ones. Let’s find the stable fixed points of Oja’s rule.

7. Assume the weight vector is sitting on an eigenvector, and is perturbed slightly by some
noise vector of small magnitude. Decompose the noise vector in the eigenbasis and study
the dynamics of the weight vector to first order in the noise. Show that the fixed point is
only stable if the weight vector is sitting on the largest eigenvector.

Look at that, that neuron is extracting the first principal component of the data!! And from
such a simple local rule!
Some interesting extensions to this are networks of neurons that extract many principal compo-
nents, or how to choose η based on the rate of change of the distribution of data. Both of these
were the topics of theoretical neuroscience papers from the last 20 years. There are learning rules
that make the network do all sorts of things. That said, our understanding is very nascent, and
all the best neural network models of the brain do not use such unsupervised learning rules.



Chapter 11

Least Squares, Pseudoinverses, &
Regression

11.1 Least Squares

Motivation

During this class, we often came across the following linear relationship between two
vectors x and y, of not necessarily the same dimensionality:

y = Ax (11.1)

If you know A and x then getting y is a simple matrix-vector multiplication.

If you know A and y then, as we’ve discussed, there might be no x (an over-determined
problem, more constraints than variables), a unique x, or infinitely many x that solve this
equation (an under-determined problem, fewer constraints than variables), depending on
A.

However, in many practical cases we might want to relax the kinds of solutions we’re
looking for. Rather than finding the perfect choice of x for which Ax = y, which might
not exist, perhaps we can find a good choice of x, one for which Ax is close to y?

157
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Figure 11.1: y, x ∈ R2, A ∈ R2×2, and we’re failing to find an x such that Ax = y. This is
because A is rank 1, and y is outside the image of A. However, despite this, there is still
a meaningful way in which x1 seems a much better guess than x2, even if it is not perfect,
because Ax1 gets closer to y than Ax2.

Let’s find the input, x, whose prediction Ax, is closest to y. Measuring the distance between y
and Ax requires choosing a norm. A reasonable choice is the L2 norm, hence, this the name of
this section, Least Squares.

Least Squares Problem Formulation

For a given x, we define the residual as :

r(x) = y −Ax (11.2)

Which characterizes the discrepancy between the y yielded by our current estimate x of
the solution to Eq. (11.1) and the true y. Our goal is to minimize the length of r, yielding
the following optimization problem:

minimize
x∈Rn

∥r(x)∥2

= minimize
x∈Rn

∥y −Ax∥2

This is called the least squares problem. By analogy with Proposition 48, we see that the
least squares problem perform a projection onto Im(A):

minimize
z∈Im(A)

∥y − z∥2

Casual Explanation

Intuitively: y can be broken down into two orthogonal components, yIm(A) ∈ Im(A) and

yIm(A)⊥ ∈ Im(A)⊥:

y = yIm(A) + yIm(A)⊥

The best you can do is when the residual r = Ax − y is orthogonal to Im(A), and hence
yIm(A) − Ax = 0. You can see this in the figures below, if this is not the case you can
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always move closer by reducing the component of the residual within Im(A). We’ll now
prove this formally, and use it to get an explicit formula for the best fitting x.

Figure 11.2: Two examples, in 3D and 2D, to illustrate that the closest you can get is
when the residual is orthogonal to the image of A. In the left example a1 and a2 are the
columns of A, hence they span the image of A.

Theorem 7. A point x⋆ is a minimizer of the least squares problem if and only if r(x∗) ∈
Im(A)⊥. Call pA the orthogonal projection onto Im(A). Then:

pA(y) = Ax∗

Proof

The fact that any minimizer x∗ of the least squares problem satisfies pA(y) = Ax∗ is
obtained from Proposition 48. We have:

r(x) = y −Ax = (yIm(A) −Ax)︸ ︷︷ ︸
∈Im(A)

+ yIm(A)⊥︸ ︷︷ ︸
∈Im(A)⊥

Therefore, pA(r(x))) = pA(y) − Ax. Let x∗ be a minimizer of the least squares problem,
since it satisfies pA(y) = Ax∗, we have pA(r(x

∗))) = 0 and therefore r(x∗) ∈ Im(A)⊥. On
the other hand, assume that x∗ is such that r(x∗) ∈ Im(A)⊥, then pA(r(x

∗))) = 0 and
therefore pA(y) = Ax∗ which proves that x∗ is a minimizer.

Uniqueness

There might be several x∗ such that pA(y) = Ax∗, therefore the least squares problem does
not necessarily admit a unique solution. However, if A has linearly independent columns
(i.e. A is injective), then for all y there exists a unique x∗ such that pA(y) = Ax∗.
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11.2 Pseudoinverse Solution to Least Squares Problem

Having characterized minimizers of the least squares problem, we will now find a formula for it.
We first need the following result.

The “Row Space Theorem”

Theorem 8. Let M ∈ Mp,n(R). Then we have that:

1. Ker(M⊤) = Im(M)⊥

2. Im(M⊤) = Ker(M)⊥

Proof. 1. Let x ∈ ker(M⊤). Then, for all y ∈ Rn, we have ⟨x,My⟩ = ⟨M⊤x, y⟩ = 0,
therefore x ∈ Im(M)⊥. Now, let x ∈ Im(M)⊥, therefore, for all y ∈ Rn, we have
0 = ⟨x,My⟩ = ⟨M⊤x, y⟩. Take y = M⊤x, we obtain 0 = ⟨M⊤x,M⊤x⟩ = ∥M⊤x∥2,
which implies M⊤x = 0, i.e. x ∈ ker(M⊤). By the principle of double inclusion, we
have proved Ker(M⊤) = Im(M)⊥.

2. Apply point 1 to M := M⊤, remembering that (M⊤)⊤ = M .

Least Squares Problem

Proposition 49. If A has linearly independent columns, then:

x⋆ = (A⊤A)−1A⊤y

Proof

Proof. Since A has linearly independent columns, we have explained before that the solu-
tion x∗ is unique. Since r(x∗) ∈ Im(A)⊥, then, from Theorem 8, r(x∗) ∈ Ker(A⊤), which
means

A⊤r(x∗) = A⊤(y −Ax∗) = 0

And therefore:
A⊤Ax∗ = A⊤y

To finish the proof, we have to show that A⊤A is invertible. If it is singular then A⊤Ax = 0
for some non-zero x. But then A⊤Ax = 0 = x⊤A⊤Ax = ||Ax||2, and the only way that
||Ax|| = 0 given that A has linearly independent columns is for x to be 0. Therefore A⊤A
is injective, and thus invertible since A⊤A is a square matrix. Therefore:

x⋆ = (A⊤A)−1A⊤y.

The Pseudoinverse Matrix

The matrix we’ve uncovered is called the pseudoinverse, or the Moore-Penrose Pseudoin-
verse. For a matrix A ∈ Mn,m(R) with linearly independent columns, the pseudoinverse



11.3. LINEAR REGRESSION 161

can be calculated as:
A† = (A⊤A)−1A⊤ ∈ Rm×n

It is a very useful object. It’s a bit like the inverse, but performing A†y, instead of
returning to you the x such that Ax = y like A−1 would do, it returns you the x⋆ such
that Ax⋆ is the nearest to y. You can find a pseudoinverse for all A, even if they don’t
have linearly independent columns, though then it doesn’t take this particular form (since
then A⊤A is no longer invertible).

11.3 Linear Regression

Motivation

We’ll now consider a very common problem setting that arises if you have two sets of
variables that you think are related, but you don’t know exactly how they’re related.
For example, you might have a set of stimuli and associated neural firing rates, they’re
related, but how is unclear a priori. Instead you want to learn this relationship from data.
In general it’s often very hard to know how these variables are related, but a good first
guess is that the relationship might be linear. This is like fitting a line of best fit to your
data. Given a dataset of pairs of variables, finding the best fitting relationship between the
two is called regression. If you assume the relationship is linear its called linear regression.
If you use an L2 norm to measure distance then this is the famous ordinary least squares
problem.

This is the third version of missing variables in the linear equation, y = Ax, now we know
the pair (x, y), but A is unknown. Unlike the other two settings, given one pair (x, y) you
can say very little about A (Ax′ for all x′ orthogonal to x can be varied arbitrarily while
ensuring that Ax = y, this shows us that there are many equally good A matrices). But
often we have a large dataset of pairs that we can use, allowing us to find a reasonable
estimate of A. We’ll now formalize this.

Ordinary Least Squares

We are given a dataset D = {xi, yi}pi=1 of pairs of vectors xi ∈ Rn and yi ∈ Rm, we want
to find the linear relationship, A ∈ Rn×m, that minimizes the distance between all yi and
their associated Axi:

min
A∈Rn×m

p∑
i=1

∥yi −Axi∥2

Ordinary Least Squares Solution

Theorem 9. Define the data matrices:

X =

 | | |
x1 x2 · · · xp

| | |

 , Y =

 | | |
y1 y2 · · · yp
| | |


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Then, if X⊤ has linearly independent columns, the ordinary least squares solution is:

A⊤ = (X⊤)†Y ⊤

Proof. Let’s show that this problem decomposes in terms of the rows of A (by ‘decomposes’
we mean that you can break the optimisation problem over A into completely separate,
smaller, and therefore easier, optimisation problems over each row of A). Label the jth

row of A as rj , then this problem is equivalent to:

min
{rj}n

j=1,rj∈Rm

p∑
i=1

n∑
j=1

(yij − ⟨rj , xi⟩)2

= min
{rj}n

j=1,rj∈Rm

n∑
j=1

p∑
i=1

(yij − ⟨rj , xi⟩)2

= min
{rj}n

j=1,ri∈Rm

n∑
j=1

ℓ(rj ,D)

Where ℓ(rj ,D) depends only on the j-th row of A. This means that each row can be chosen
independently to minimize ℓ(rj ,D). Let us show that each ℓ(rj) is a hidden least-squares
problem. This is one of nicest tricks of maths, we re-frame our problem and show it is
equivalent to one we’ve already solved, so we can just use that solution!
Define the output vector for dimension j, i.e. the rows of Y :

ỹj =
[
y1j . . . ypj

]⊤
Then we have:

ℓ(rj ,D) =

p∑
i=1

(yij − ⟨rj , xi⟩)2

=
∥∥ỹj −X⊤rj

∥∥2
2

This is a least-squares problem but where X⊤ plays the role of A, ỹj of y, and rj of x.
Therefore, if X⊤ has linearly independent columns (which requires m ≤ p), then we can
find the least-squares rj using the pseudoinverse:

rj = (X⊤)† = (XX⊤)−1Xỹj

Stacking each of these solutions we derive that:

A⊤ = (X⊤)†Y ⊤

So we can find the best A with a simple matrix pseudoinverse and product!
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11.4 Ridge Regression

Motivation

In the previous section we found a solution if X⊤ has linearly independent columns.
Roughly speaking, this tends to happen if the number of pairs of data is larger than
the input dimensionality. This is morally like solving an overdetermined linear equation
y = Ax for x given y and A, in which there is no good solution for x. You therefore find
the one that does best.

However, often we’re in the underdetermined setting. For example, imagine you’re mea-
suring the neural representation of some variable x ∈ R, call the neural response function
g : R → RN , i.e. when the variable takes value x′, the neurons fire with rates g(x′). Now
you would like to build a linear decoder, A, that tells you the most likely value of x given
a measurement of neural activities: x̂ = Ag(x). You’re going to build this decoder using
measured pairs of {xi, g(xi)}pi=1. This is exactly the ordinary least squares problem, how-
ever, since you might be recording 1000s of neurons, you’re very unlikely to record enough
trials to ensure that p > n. This means the columns of X⊤ won’t be linearly independent
and our previous solution won’t work.

Intuitively, the solution stops working because there are subspaces of Rn that the data
does not explore. As a result, how Ay behaves for y orthogonal to the span of {g(xi)}pi=1

is completely unconstrained: Ay can take whatever values you want, and it won’t effect
how well A fits the data. This means even the pseudoinverse as advertised above can’t
work: how can the pseudoinverse know which A to output? There are infinitely many
that behave optimally!

Our reasonable hunch to choose between them will be that if we don’t know how the data
behaves in some subspace, the decoder should guess that the output is 0. We will do this
by adding a term to the objective that penalizes the learnt fit, A, based on its size. Then,
as you’ll show in the exercises, this term breaks the equivalence between all the solutions
and chooses the one that outputs zero on all the unconstrained spaces. For a mixture
of mathematical convenience and it’s beautiful interpretation as a Gaussian prior on A
(see probability lectures), we’ll choose the term to be ||A||2F . This leads us to the ridge
regression problem.

Ridge Regression

We are given a dataset D = {xi, yi}pi=1 of pairs of vectors xi ∈ Rn and yi ∈ Rm, we
want to find the linear relationship, A ∈ Rn×m, that minimizes a mixture prediction error
between Axi and the data yi, and the size of A:

min
A∈Rn×m

p∑
i=1

∥yi −Axi∥2 + λ||A||2F

λ > 0 is the ridge parameter that controls the tradeoff between the two terms.
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Ridge Regression Solution

Theorem 10. The ridge regression solution is:

A = (XX⊤ + λI)−1XY ⊤

Proof. Again we can decompose the problem according to the rows of A:

min
{ri}m

i=1,ri∈Rn

p∑
i=1

m∑
j=1

(yij − ⟨rj , xi⟩) + λ||rj ||2

=

m∑
j=1

min
rj∈Rn

p∑
i=1

(yij − ⟨rj , xi⟩) + λ||rj ||2 =

m∑
j=1

min
rj∈Rn

ℓ(rj ,D)

Then we’re going to do the clever maths thing again and show how this problem is like
a modified version of the ordinary least squares problem we’re already solved. In the
previously defined stacked dataset variables:

ℓ(rj ,D) = ||ỹj −X⊤rj ||2 + λ||rj ||2

We create the stacked objects, X̄ ∈ Rn×(n+p), ȳj ∈ Rn+p:

X̄ =
[
X

√
λI
]

ȳj =

[
ỹj
0

]
Now it is easy to verify that:

||ȳj − X̄⊤rj ||2 = ||ỹj −X⊤rj ||2 + λ||rj ||2 = ℓ(rj ,D)

But then this is just another ordinary least squares problem! The minima is therefore:

rj = (X̄X̄⊤)−1X̄ȳj = (XX⊤ + λI)−1Xyj

And stacking each of these rows of the optimal A, we recover the stated result.

Comments

Trade-off Between Terms This procedure works for any λ > 0. If λ is very large the
optimal A will be very close to 0, and won’t fit the data very well. If it is very small
the optimal A will fit the data nearly as well as it can. Choosing the best λ, and other
similar question, are hot questions in machine learning and statistics, related to the idea
of overfitting.

Ridge Regression as Orthogonalising Aligned Datapoints We motivated ridge
regression in the setting where n > p, where parts of A are unconstrained. However,
another setting where XX⊤ is singular and therefore ordinary least squares doesn’t work
is when p > n but the columns of X⊤ are linearly dependent. We can interpret the ridge
regression solution in this setting in the following way. The ridge regression problem is
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performed on the stacked input data vectors:

X̄⊤ =

[
X⊤

νI

]
This is like taking each column of X⊤, x̃j , and adding on a new vector on the end, ij ,
making a bigger, n + p dimensional vector. In the p dimensional subspace you’ve added
each of these vectors points in an orthogonal direction, so even if the columns of X were
linearly dependent, the columns of X̄ never will be, ensuring the ridge regression solution
exists!

This exercises justifies some of the motivating claims we made.
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11.5 Exercise Sheet 11: Regression

Exercises: Pseudoinverse

Exercise 107. Show that, if A is invertible, A† = A−1.

Exercise 108. What is the pseudoinverse of a vector?

Exercise 109. Show that AA† is idempotent (i.e. (AA†)2 = AA†). What space does AA†

project onto?

Exercise 110. What is the pseudoinverse of A in terms of the components of its singular
value decompositions, U , V , and S? Interpret what the pseudoinverse is doing using a set
of diagrams like those in figure 8.2

Important Exercise!

Exercise 111. Why is (XX⊤ + λI) invertible for any λ > 0?
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11.6 Neuro Q8: fMRI & Correlated Regressors

What is fMRI? Linear regression pops up literally everywhere. One common setting is in
fMRI - functional Magnetic Resonance Imaging. fMRI involves placing animals, including fa-
mously humans (and even some famous humans), in enormous magnetic fields - 106 times bigger
than the earth’s magnetic field. It turns out that oxygenated blood and deoxygenated blood
have different magnetic response properties: deoxygenated blood is diamagnetic, meaning it an-
tialigns its magnetic dipole with the applied magnetic field, locally damping it, while oxygenated
blood is paramagnetic, meaning it aligns, causing local amplification. If you suddenly start using
one brain area more, your neurons will fire using up all the oxygen available locally, causing the
blood to become diamagnetic and the local magnetic field to reduce. Then cells in that brain
area realise there’s less oxygen and tell the capillaries to swell, this causes much more oxygenated
blood to rush in, enhancing the magnetic field. If the resolution is high enough, you can watch
these changes happen in the local magnetic field (by measuring the magnetic field around the
participant and solving Maxwell’s equations to recover what the magnetic field must be inside
the animal’s head). This is very cool! It means you can measure which areas of a person’s brain
are activating, and people have used this to test all sorts of interesting brain hypotheses (and
some garbage ones).

Regressing Voxels For example, you might use fMRI to measure how the brain encodes a
set of images. To that end, you present the images to participants in the scanner and measure
how each little part of the brain responds (the discrete units you chunk the brain into are called
voxels, the 3D volume generalisation of the pixel). To draw interesting conclusions you might
want to understand how each brain area encodes some features of the image, such as the size
and colour. One way to examine this is to predict how a particular voxel will respond from these
features, if it is predictable then the brain area encodes them. To do this you could build a linear
model of each voxel’s response:

vij = wcjci + wsjsi + ηij

Where vij is voxel j’s response to image i, ci and si are the colour and size of image i, and ηij
is noise encoding that this model will never be a perfect. wcj and wsj therefore represent the
jth voxel’s tuning to the two features, colour and size. Here these are the quantities of scientific
interest.

Linear Regression There are I images, stack the responses and noise in each voxel j and
the size and colour of each image into vectors, vj , ηj , c, s ∈ RI ; then our model of each voxel’s
response is:

vj = wcjc+ wsjs+ ηj

We use ordinary least squares to predict the regression weights, ŵcj and ŵsj , creating the optimal
predicted response: v̂j = ŵcjc+ ŵsjs.

A Result! You’ll be famous! You notice something strange: ŵj and v̂j are positively
correlated (

∑
j v̂jŵj > 0)! If a voxel has high tuning to shape it also has high tuning to colour

and vice versa. Perhaps this is a fundamental claim about the way the brain encodes these two
concepts? You run excitedly to the nearest soapbox and loudly proclaim your newest finding to
all and sundry. As you are signing sponsership deals with your favourite magnet firms, a wizened
character emerges from the gawping crowd. He walks with a limp and the support of staff, and
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his countenance is wrinkled like a walnut with long years of thought over the intricacies of linear
regression. He pauses, the crowd withdraws in anticipation, and he begins a series of riddles:

1. “As all practioner’s of the art of linear regression know, the key space to consider is the
span of the stimulus vectors” he begins,

Thoughts of hot summers spent sweating over linear algebra wing through your head.
Meditate and justify why the residuals of the optimal predicted response vj − v̂j live in the
orthogonal complement of the span of the stimulus and colour vectors: span({c, s})⊥.

2. He pauses, the crowd waits with baited breath, he scratches his tangled beard causing a
flurry of birds to escape.

“What does it mean for my brain to respond to a scratch? I think it is that the more I
scratch the more it responds. However, if my brain is always responding at a non-zero rate
regardless of the scratch, that is not really a response, no?”. You hastily agree. “Yet if
your data has a mean this might be the case.”

The ground drops beneath you: you realise you forgot to de-mean your regressors!

(a) Explain why, if the response and stimuli all have non-zero means, then vj , s, and c all
have a non-zero component along the all-ones vector, 1 ∈ RI .

(b) Take the extreme case where one stimulus is constant s = α1. Explain why, if the jth
voxel’s response has non-zero mean, its regression weight, wsj , will be non-zero.

(c) Take another extreme case, let’s say the voxel’s true response doesn’t depend on either
stimulus, but has a non-zero mean, for example vj = β1. Explain why the regression
weights will again be non-zero.

You realise the old man is right. Even if the voxel is unrelated to the stimulus, if both
the voxel response and the regressor have non-zero means the regression weights will be
non-zero.

(d) Explain why de-meaning either the voxel response or the stimulus before performing
regression will fix this problem. (i.e. you do regression not with vj , c and s, but with
the same vectors after you subtract their mean)

“Hence our first rule of thumb: life is easier if you de-mean your regressors” He expounds.

The crowd tuts in the background and your sponsors return to their waiting limousine.
You panic, and quickly de-mean your regressors (assume from this point that all variables
are mean-zero), you re-run the regression and breathe a sigh of relief:

“It’s okay! you shout, the regressors are still correlated, but after subtracting the mean
the regressors are negatively correlated now! I’m still clever and important!!”

3. The crowd turns to the old man. “The world is often noisy. A small amount of noise is
not a problem, but too much and problems arise.” Let’s take the simplest case: orthogonal
regressors and just one voxel.

(a) With no noise we can imagine the true voxel response as lying in the span of the
stimulus: v1 = w1cc+w1ss. In this plane, draw some of the lines of constant w1cw1s.

(b) The true data is w1cc+w1ss+ η, η ∼ N (0, σ2I). The projection of Guassian noise is
also Gaussian noise. Use this to sketch on the same plot the distribution of measured
ŵ1c and ŵ1s given a few different true w1c and w1s.
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(c) An estimator α̂ for a quantity α is unbiased if the average estimator, averaged over
the noise in the world, equals the true value: E[α̂] = α.

Explain why, for small but non-zero σ, ŵ1cŵ1s is an unbiased estimator for w1cw1s.

(d) Now consider larger σ. Using the curvature of the lines of equal w1cw1s that you
drew earlier, justify that, no matter the value of w1cw1s: |ŵ1cŵ1s| < w1sw1s, i.e. the
estimator makes systematic errors towards 0.

4. “Now let’s return to the case of correlated regressors”, he says, sucking on his enormous
twizzly-twirly tobacco pipe, which emits ellipsoidal balls of smoke from a series of holes.
“If the two variables are correlated, does this not mean that c and s are aligned?”

Justify that this is true. “Of course,” you say.

“But then this changes the problem”

(a) Again draw lines of constant w1cw1s, they are not the same right?

(b) Assume s and c are positively aligned. Imagine you have two voxels with w1cw1s = β
and w2cw2s = −β for some positive β. Argue from the same sort of diagrams that,
for a fixed amount of noise, the noise will reduce w1cw1s more than w2cw2s.

(c) Use this to argue that, even if the true regression weights are uncorrelated
∑

j wjcwjs =
0, then with correlated regressors the noise will make the mean of your estimator,∑

j ŵjcŵjs positive.

“This leads us to our second rule of thumb for regression, correlated regressors can produce
uncorrelated regression weights, even if the true regression weights are uncorrelated!”
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